Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 969-978.doi: 10.13229/j.cnki.jdxbgxb.20220656

Previous Articles     Next Articles

Deployment of heterogeneous sensors for traffic accident detection and prevention

Qian CAO(),Zhi-hui LI(),Peng-fei TAO,Hai-tao LI,Yong-jian MA   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2022-05-27 Online:2024-04-01 Published:2024-05-17
  • Contact: Zhi-hui LI E-mail:18844548258@163.com;lizhih@jlu.edu.cn

Abstract:

At present, there is a lack of technical standards and theoretical methods in heterogeneous sensors deployment for road traffic accident detection and prevention. Therefore, this paper presented a deployment method of heterogeneous sensors for accident detection and prevention. Considering the uncertainty of traffic accidents, historical traffic accident data was used to obtain the stable spatial distribution of road accident risk. Then sensors deployment problem was converted into the optimal coverage problem on road traffic accidents risk. The optimal deployment model of heterogeneous sensors was established to maximize the coverage quality with the constraint of sensors deployment cost, accidents detection error, and so on. International open accidents data and road scenarios were used to validate the proposed method. The results show that the sensors layout scheme can effectively match with road accidents risk and achieve the expected coverage performance under different cost. Therefore, the proposed method can meet the requirements of sensors deployment under accidents uncertainty, and realize the optimal layout of heterogeneous sensors.

Key words: traffic engineering, sensors deployment, combinatorial optimization, heterogeneous sensors, traffic accident detection and prevention

CLC Number: 

  • U491.5

Fig.1

Diagram of sensors perception model"

Fig.2

Multi-sensor perception model"

Fig.3

Study region and road"

Fig.4

Distribution of different types of accidents"

Fig.5

Spatial distribution of different types of accidents"

Fig.6

Detection accuracy function of sensors"

Table 1

Experimental parameter setting"

参数含义取值
C1第1种类型的单个传感器布设的综合成本4万元
C2第2种类型的单个传感器布设的综合成本3万元
C'传感器布设的最高成本约束范围20~60万元
Ω1第1种类型传感器的响应范围0,180 m
Ω2第2种类型传感器的响应范围0,180 m
E'传感器对交通事故检测的最大误差5%
3σ单次事故风险的空间分布范围100 m

Table 2

Sensors layout scheme under different cost"

成本/万元传感器类型Western AveHalsted St
数量/个布设位置/m数量/个布设位置/m
20s123 080,3 230290,240
s241 560,2 260,2 410,2 9304810,1 600,1 750,2 450
30s132 380,2 540,3 210340,190,1 730
s26760,1 420,1 580,2 230,2 910,3 0606350,510,830,1 580,2 180,2 460
40s142 230,2 390,3 100,3 250420,170,830,1 760
s28150,750,1 420,1 580, 2 550,2 950,3 410, 3 5708

330,500,670,1 610,2 150,2 380,

2 530,3 300

50s152 230,2 380,2 940,3 090,3 24070,150,810,1 130,1 620,1 780,2 500
s210150,750,1 370,1 540,1 700, 1 860,2 540, 2 700,3 400,3 5607280,430,590,2 150,2 340, 3 300,3 610
60s132 340,3 070,3 220330,180,1740
s216

0,160,640,800,1 240,1 390,1 530,1 680,

1 830,1 990,2 180,2 490,2 920,3 330,

3 480, 3 630

16

300,450,600,760,910,11 130,

1 320,1 590,1 900,2 060,2 220,

2 390,2 550,3 210,3 370,3 610

Fig.7

Matching relation between sensors′ location and road risk condition on Western Ave"

Fig.8

Matching relation between sensors′ location and road risk condition on Halsted St"

Table 3

Expected coverage rate and actual coverage rate of accidents on Western Ave"

成本/

万元

期望覆盖率/%实际覆盖率/%
PCRPCR-L1PCR-L2PCR-L3RCRRCR-L1RCR-L2RCR-L3
2042.554.438.240.132.635.427.733.8
3054.566.749.152.445.645.841.047.3
4067.271.956.469.058.458.351.860.8
5075.680.769.175.965.460.460.268.5
6082.993.080.080.776.281.369.977.5

Table 4

Expected coverage rate and actual coverage rate of accidents on Halsted St"

成本/

万元

期望覆盖率/%实际覆盖率/%
PCRPCR-L1PCR-L2PCR-L3RCRRCR-L1RCR-L2RCR-L3
2048.740.745.853.341.425.843.046.0
3065.057.462.569.354.540.351.061.5
4074.372.272.976.068.854.864.076.4
5081.375.983.382.075.658.178.080.5
6090.385.290.692.087.275.885.092.5

Table 5

Coverage rate deviation of accidents"

成本/

万元

覆盖率偏差(Western Ave)/%覆盖率偏差(Halsted St)/%
DCRDCR-L1DCR-L2DCR-L3DCRDCR-L1DCR-L2DCR-L3
209.919.010.56.37.314.92.87.4
308.920.88.15.110.517.111.57.8
408.913.64.68.25.617.48.9-0.4
5010.120.38.87.55.717.95.31.5
606.711.710.13.33.19.45.6-0.5

Fig.9

Coverage rate deviation of accidents"

1 Koble H M, Anderson G, Goldblatt R. Formulation of guidelines for locating freeway sensors[R]. Washington: Federal Highway Admin, 1979.
2 姜桂艳. 道路交通状态判别技术与应用[M]. 北京: 人民交通出版社, 2014.
3 杨志清. 服务于安全运营管理的高速公路网信息系统[D]. 上海: 同济大学交通运输工程学院, 2008.
Yang Zhi-qing. The study on expressway network information system served for operating safety[D]. Shanghai: Tongji University, College of Transportation Engineering, 2008.
4 Qin N N, Chen J L. An area coverage algorithm for wireless sensor networks based on differential evolution[J]. International Journal of Distributed Sensor Networks, 2018, 14(8): 1-11.
5 Chauhan N, Chauhan S. A novel area coverage technique for maximizing the wireless sensor network lifetime[J]. Arabian Journal for Science and Engineering, 2021, 46(4): 3329-3343.
6 刘志敏, 贾维嘉, 王国军. 有向传感器网络覆盖预测模型与数量估计[J]. 软件学报, 2016, 27(12): 3120-3130.
Liu Zhi-min, Jia Wei-jia, Wang Guo-jun. Coverage prediction model and number estimation for directional sensor networks[J]. Journal of Software, 2016, 27(12): 3120-3130.
7 刘志敏, 贾维嘉, 王国军. 视觉传感器网络边界部署k-覆盖数量估计[J]. 计算机学报, 2019, 42(2): 79-92.
Liu Zhi-min, Jia Wei-jia, Wang Guo-jun. k-Coverage estimation in visual sensor networks based on boundary deployment[J]. Chinese Journal of Computers, 2019, 42(2): 79-92.
8 范兴刚, 王恒, 蒿翔. 有向传感器网络的覆盖增强算法[J]. 仪器仪表学报, 2017, 38(2): 368-377.
Fan Xing-gang, Wang Heng, Hao Xiang. Algorithm for enhancing coverage ratio in directional sensor networks[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 368-377.
9 卢毅, 周杰, 万连城. 一种无线传感器网络二维目标覆盖的改进方法[J]. 西安电子科技大学学报, 2019, 46(2): 101-106.
Lu Yi, Zhou Jie, Wan Lian-cheng. Improved method for 2D target coverage in wireless sensor networks[J]. Journal of Xidian University, 2019, 46(2): 101-106.
10 Zhao H T, Wang H J, Wu W Y, et al. Deployment algorithms for UAV airborne networks toward on-demand coverage[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2015-2031.
11 Wang H J, Zhao H T, Wu W Y, et al. Deployment algorithms of flying base stations: 5G and beyond with UAVs[J]. IEEE Internet of Things Journal, 2019, 6(6): 10009-10027.
12 Savkin A V, Huang H L. Deployment of unmanned aerial vehicle base stations for optimal quality of coverage[J]. IEEE Wireless Communications Letters, 2019, 8(1): 321-324.
13 Sobouti M J, Rahimi Z, Mohajerzadeh A H, et al. Efficient deployment of small cell base stations mounted on unmanned aerial vehicles for the internet of things infrastructure[J]. IEEE Sensors Journal, 2020, 20(13): 7460-7471.
14 李明, 胡江平, 曹晓莉. 异构传感网成本优化的节点部署策略 [J]. 西安电子科技大学学报, 2021, 48(4): 11-19, 49.
Li Ming, Hu Jiang-ping, Cao Xiao-li. Minimum cost of node deployment strategy for heterogeneous sensor networks[J]. Journal of Xidian University, 2021, 48(4): 11-19, 49.
15 Kashi S S. Area coverage of heterogeneous wireless sensor networks in support of Internet of Things demands[J]. Computing, 2019, 101(4): 363-385.
16 Al-Fuhaidi B, Mohsen A M, Ghazi A, et al. An efficient deployment model for maximizing coverage of heterogeneous wireless sensor network based on harmony search algorithm [J]. Journal of Sensors, 2020: No. 8818826.
17 Elma K J, Meenakshi S. Optimal coverage along with connectivity maintenance in heterogeneous wireless sensor network[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(3): 3647-3658.
18 Hanh N T, Binh H T T, Hoai N X, et al. An efficient genetic algorithm for maximizing area coverage in wireless sensor networks [J]. Information Sciences, 2019, 488: 58-75.
19 陈金林. 基于网络核密度估计城市路网事故黑点鉴别研究[D]. 南京: 东南大学交通学院, 2015.
Chen Jin-lin. Research on identifying hotspots in the urban road networks based on the network kernel density estimation method[D]. Nanjing: Southeast University, School of Transportation, 2015.
20 Xie Z X, Jun Y. Kernel density estimation of traffic accidents in a network space[J]. Computers Environment and Urban Systems, 2008, 32(5): 396-406.
[1] Xin ZHANG,Qi-zhou HU,Jun HE,Xiao-yu WU. Traffic condition diagnosis of confluence areas considering traffic infarction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 478-484.
[2] Wei-hua ZHANG,Jia-ming LIU,Li-peng XIE,Heng DING. Lane⁃changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 469-477.
[3] Hao YUE,Qi-yue ZHANG,Zi-yu YANG,Meng-jie REN,Xu ZHANG. Iterative weighted algorithms of static congestion traffic assignment considering spatial queuing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 136-145.
[4] Xiao-jing DU,Rong-han YAO. Evolutionary game mechanism of mandatory lane changing for exiting for intelligent connected bus [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 124-135.
[5] Zhuang-lin MA,Shan-shan CUI,Da-wei HU,Jin WANG. Travel mode choice of traditional car travelers after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1981-1993.
[6] Ya-li ZHANG,Rui FU,Wei YUAN,Ying-shi GUO. Classification and recognition model of entering and leaving stops' driving style considering energy consumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2029-2042.
[7] Chao-ying YIN,Ying LU,Chun-fu SHAO,Jian-xiao MA,De-jie XU. Impacts of built environment on commuting mode choice considering spatial autocorrelation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1994-2000.
[8] Heng-yan PAN,Yong-gang WANG,De-lin LI,Jun-xian CHEN,Jie SONG,Yu-quan YANG. Evaluating and forecasting rear⁃end collision risk of long longitudinal gradient roadway via traffic conflict [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1355-1363.
[9] Kai LU,Guang-hui XU,Zhi-hong YE,Yong-jie LIN. Algebraic method of bidirectional green wave coordination control for the head of the platoon considering the clearance time [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 421-429.
[10] Qian CAO,Zhi-hui LI,Peng-fei TAO,Yong-jian MA,Chen-xi YANG. Traffic accident risk assessment method for road network considering risk heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2817-2825.
[11] Xin ZHANG,Wei-hua ZHANG. Safety analysis of main line under different traffic conditions in expressway confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1308-1314.
[12] Da-yi QU,Zi-xu ZHAO,Yan-feng JIA,Tao WANG,Qiong-hui LIU. Car⁃following dynamics characteristics and model based on Lennard⁃Jones potential [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2549-2557.
[13] Chun-jiao DONG,Dai-yue DONG,Cheng-xiang ZHU-GE,Li ZHEN. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2618-2625.
[14] Da-yi QU,Kai-xian HEI,Hai-bing GUO,Yan-feng JIA,Tao WANG. Game behavior and model of lane-changing on the internet of vehicles environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 101-109.
[15] Wen-hui ZHANG,Jing YI,Wei LIU,Qiu-ying YU,Lian-zhen WANG. Injury mechanism of occupants in bus during rear-end crash based on MADYMO [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!