Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1196-1204.doi: 10.13229/j.cnki.jdxbgxb.20220757

Previous Articles    

A new electric servo actuator based on energy recovery and its dynamic energy consumption analysis

Qian LIU1(),Zhu-xin ZHANG2(),Ding-xuan ZHAO1,Li-xin WANG1,Ya-fei WANG3   

  1. 1.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066000,China
    2.School of Vehicle and Energy,Yanshan University,Qinhuangdao 066000,China
    3.Systems Engineering Research Institute,China State Shipbuilding Corporation Limited,Beijing 100094,China
  • Received:2022-06-18 Online:2024-05-01 Published:2024-06-11
  • Contact: Zhu-xin ZHANG E-mail:lq_ysu@stumail.ysu.edu.cn;zhzhxn@ysu.edu.cn

Abstract:

Aiming at the problem that the load potential energy is wasted in the load falling stage of the existing electric servo actuator, this paper proposes a new electric servo actuator implementation scheme based on energy recovery. The project uses an accumulator parallel to the transmission system to recover the potential energy dissipated during the load falling stage and provide extra thrust during the load lifting stage. Combined with the theory of power bond graph, a dynamic energy consumption analysis method of mechanical system in complex energy domain is introduced. The dynamic energy consumption model is established, and the comparison simulation test is carried out. The simulation results show that the response time can be reduced by 36.9%, and the motor starting torque can be reduced by 43.3%. When lifting the load, the energy consumption is reduced by about 31%, and 36% of potential energy can be recovered. In the working process, the bearing capacity of the ball screw pair is significantly reduced, which is helpful to reduce friction heat and prolong the service life of the screw.

Key words: mechatronics engineering, electric servo actuator, energy recovery, accumulator, power bond graph, dynamic energy consumption analysis

CLC Number: 

  • TP242.2

Fig.1

Structural schematic diagram"

Table 1

Parameters of the key structures"

结构参数数值/型号单位结构参数数值/型号单位
负载质量600kg丝杠导程10mm
电机功率3kW丝杠外径40mm
最大转矩14N·m丝杠惯量8.63e-4kg?m2
缸杆外径80mm联轴器型号C68
缸杆质量18.46kg联轴器惯量7.18e-4kg?m2

Fig.2

Working principle diagram"

Fig.3

Energy consumption analysis diagram of thetransmission system"

Fig.4

Power bond graph of the transmission system"

Fig.5

Mathematical model of the motor"

Fig.6

Principle model of the accumulator"

Fig.7

Schematic diagram of the simulation system"

Table 2

Parameters of the servo motor and controller"

电机参数数值单位控制器参数数值
最大速度6000r/minKp2000
最大转矩14N·mTi0.8
转子惯量0.04kg·m2Ta0.8

Table 3

Parameters of the power bond graph"

元器件名称符号物理意义数值单位
联轴器C2刚度系数6.7e-5rad/(N·m)
I4转动惯量7.18e-4kg·m2
丝杠C6刚度系数7.8e-9rad/(N·m)
I8转动惯量8.63e-4kg·m2
R9转动阻尼6.3e-4N·m·s
丝杠-螺母TF1转动变为平动628m-1
油腔-螺母TF2流动变为平动22.61e-3m2
液压油C14弹性系数6.53e-13m3/Pa
管路R16流动阻尼1.81e6Pa·s/m3
节流阀R18流动阻尼8.76e7Pa·s/m3
缸杆I21质量18.46kg
Se22重力-180.91N
R23摩擦阻力12N
负载I25质量600kg
Se26重力-5880N

Fig.8

Velocity response curves of the load"

Fig.9

Start torques curve of the motor"

Fig.10

Dynamic curves of the new electric servo actuator"

Fig.11

Output thrust curves of the ball screw pair"

Fig.12

Energy curves of the conventional electric servo actuator"

Fig.13

Energy curves of the new electric servo actuator"

1 He X, Xiao G, Hu B, et al. The applications of energy regeneration and conversion technologies based on hydraulic transmission systems: a review[J]. Energy Conversion and Management, 2020, 205:No. 112413.
2 Quan Z, Quan L, Zhang J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 336-346.
3 Liu D, Wang J, Wang S, et al. Active disturbance rejection control for electric cylinders with PD-type event-triggering condition[J]. Control Engineering Practice, 2020, 100: No. 104448.
4 Asswad E M, Alfayad S, Khalil K. Experimental estimation of friction and friction coefficient of a lightweight hydraulic cylinder intended for robotics applications[J]. International Journal of Applied Mechanics, 2018, 10(8):No. 1850080.
5 梁涛, 张晓刚, 葛磊, 等. 泵阀双源协同驱动非对称液压缸系统特性[J]. 液压与气动, 2021, 45(12): 58-64.
Liang Tao, Zhang Xiao-gang, Ge Lei, et al. Characteristics of valve control and pump control dual source cooperative drive differential cylinder system[J]. Chinese Hydraulics & Pneumatics, 2021, 45(12): 58-64.
6 Qu S, Fassbender D, Vacca A, et al. A high-efficient solution for electro-hydraulic actuators with energy regeneration capability[J]. Energy, 2021, 216: No.119291.
7 龚中良, 金可. 电动缸传输效率测试系统的设计与试验研究[J]. 机械设计与制造, 2020, 2020: 300-303.
Gong Zhong-liang, Jin Ke. Design and test of transmission efficiency test system for electric cylinder[J]. Machinery Design & Manufacture, 2020, 2020: 300-303.
8 娄开成, 徐志鹏. 液压动态加载的伺服电动缸综合性能测试系统设计[J]. 中国计量大学学报, 2017, 28(4): 467-471.
Lou Kai-cheng, Xu Zhi-peng. Design of servo electric cylinders comprehensive performance test systems of based on hydraulic dynamic loading[J]. Journal of China University of Metrology, 2017, 28(4):467-471.
9 权龙, 夏连鹏, 赵斌, 等. 液压驱动机械臂势能回收利用研究工作进展[J]. 机械工程学报, 2018, 54(20): 4-13.
Quan Long, Xia Lian-peng, Zhao Bin, et al. Innovation progress in research on gravitational potential energy recovery and utilization of hydraulic driven mechanical arm[J]. J Mech Eng, 2018, 54(20): 4-13.
10 李泽鹏, 权龙, 葛磊, 等. 液电混合驱动液压挖掘机动臂特性及能效研究[J]. 机械工程学报, 2018, 54(20): 213-219.
Li Ze-peng, Quan Long, Ge Lei, et al. Research on characteristics and energy efficiency of hydraulic-electric combined driving hydraulic excavator boom[J]. J Mech Eng, 2018, 54(20): 213-219.
11 刘昌盛, 何清华, 张大庆, 等. 混合动力挖掘机势能回收系统参数优化与试验[J].吉林大学学报: 工学版, 2014, 44(2): 379-386.
Liu Chang-sheng, He Qing-hua, Zhang Da-qing, et al. Parameter optimization and experiment of potential energy recovery system of hybrid excavator[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2): 379-386.
12 朱建新, 刘复平, 朱俊霖, 等. 电动叉车势能回收液压系统工作效率分析与实验[J]. 机械设计与研究, 2011, 27(6): 101-104.
Zhu Jian-xin, Liu Fu-ping, Zhu Jun-lin, et al. Analysisand experimental study on hydraulic system work efficiency for recovering the potential energy of electric forklift[J]. Machine Design and Research, 2011, 27(6): 101-104.
13 赵丁选, 陈明东, 戴群亮, 等. 油液混合动力液压挖掘机动臂势能回收系统[J].吉林大学学报: 工学版, 2011, 41(): 150-154.
Zhao Ding-xuan, Chen Ming-dong, Dai Qun-liang, et al. System of arm potential energy recovery in hybrid hydraulic excavators[J]. Journal of Jiin University(Engineering and Technology Edition), 2011, 41(Sup.1): 150-154.
14 Lin T, Huang W, Ren H, et al. New compound energy regeneration system and control strategy for hybrid hydraulic excavators[J]. Automation in Construction, 2016, 68: 11-20.
15 Lin T, Wang Q, Hu B, et al. Research on the energy regeneration systems for hybrid hydraulic excavators[J]. Automation in Construction, 2010, 19(8): 1016-1026.
16 樊延都, 张博航, 陈凯. 滚珠丝杠副高密封性组合油封[P]中国: CN2021I2532349.8, 2022-04-12.
17 谷玉念, 林新忠. 滚珠丝杠副及密封结构[P].中国:CN202121293380.4,2021-11-26.
18 Liu W, Li L, Cai W, et al. Dynamic characteristics and energy consumption modelling of machine tools based on bond graph theory[J]. Energy, 2020, 212: No.118767.
19 Chen Y, Sun Q, Guo Q, et al. Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved Newton-Euler iterative method[J]. Micromachines, 2022, 13(1):No. 13010130.
20 Ungureanu L M, Petrescu F I T. Dynamics of mechanisms with superior couplings[J]. Applied Sciences, 2021, 11(17): No.11178207.
21 Tu T W. Dynamic modelling of a railway wheelset based on Kane's method[J]. International Journal of Heavy Vehicle Systems, 2020, 27(1/2): 202-226.
22 Somu N, Mr G R, Ramamritham K. A hybrid model for building energy consumption forecasting using long short term memory networks[J]. Applied Energy, 2020, 261: No.114131.
23 Saeedi M, Moradi M, Hosseini M, et al. Robust optimization based optimal chiller loading under cooling demand uncertainty[J]. Applied Thermal Engineering, 2019, 148: 1081-1091.
24 Su S, Wang X, Cao Y, et al. An energy-efficient train operation approach by integrating the metro timetabling and eco-driving[J]. IEEE Trasactions on Intelligent Transportation Systems, 2019, 21(10): 4252-4268.
25 KomuZ G, Geitner G H. Systems featuring chain structures⁃a generalized bond graph modelling[J]. International Journal of General Systems, 2019, 48(8): 861-889.
26 Geinter G H, Komurgoz G. Generic power split modelling for compound epicyclic four-speed gears[J]. Mechanism and Machine Theory, 2017, 116: 50-68.
27 Zhang Z, Liu Q, Zhao D, et al. Electrical aircraft ship integrated secure and traverse system design and key characteristics analysis[J]. Applied Sciences, 2022, 12(5): No.12052603.
28 Zhang Z, Liu Q, Zhao D, et al. Research on shipborne helicopter electric rapid secure device: system design, modeling, and simulation[J]. Sensors, 2022, 22(4): No.22041514.
29 Wang Y, Zhao D, Wang L, et al. Dynamic simulation and analysis of the elevating mechanism of a forklift based on a power bond graph[J]. Journal of Mechanical Science and Technology, 2016, 30(9): 4043-4048.
30 Kato S, Sasaki S. Effects of hydraulic oil and lubricant additives on dynamic friction properties under various reciprocating sliding conditions[J]. Friction, 2020, 8(2): 471-480.
31 Yi T, Ma F, Jin C, et al. Investigation on thermal characteristics of the oil-circulating hydraulic energy storage system for hybrid mining trucks[J]. Frontiers in Energy Research, 2021, 9:No. 733919.
[1] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[2] Peng HU,Jian-xin ZHU,Chang-sheng LIU,Da-qing ZHANG. Characteristics of boom potential energy alternate recovery and utilization system of hydraulic excavator [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2256-2264.
[3] Xin-xin SHI,Jia-cai HUANG,Fang-zheng GAO. Measuring noise rejection of motion control system based on fractional BICO filter [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1873-1878.
[4] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[5] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator [J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure [J]. 吉林大学学报(工学版), 2018, 48(2): 349-354.
[7] ZENG Xiao-hua, LI Wen-yuan, SONG Da-feng, LI Gao-zhi, FENG Tao. Driving performance of hub-motor hydraulic driving system for heavy commercial vehicles [J]. 吉林大学学报(工学版), 2017, 47(4): 1009-1016.
[8] DONG Han,LIU Xin-hui,WANG Xin,ZHENG Bo-yuan,LIANG Wei-quan,WANG Jia-yi. Impact of main parameters of accumulator on parallel hydraulic hybrid [J]. 吉林大学学报(工学版), 2015, 45(2): 420-428.
[9] DONG Han, LIU Xin-hui, WANG Xin, ZHENG Bo-yuan, LIANG Wei-quan, WANG Jia-yi. Parallel hydraulic hybrid braking regenerative characteristics [J]. 吉林大学学报(工学版), 2014, 44(6): 1655-1663.
[10] LIU Chang-sheng, HE Qing-hua, ZHANG Da-qing, LI Tie-hui, GONG Jun, ZHAO Yu-ming. Parameter optimization and experiment of potential energy recovery system of hybrid excavator [J]. 吉林大学学报(工学版), 2014, 44(2): 379-386.
[11] DONG Han, LIU Xin-hui, WANG Xin, CHEN Jin-shi, WANG Jia-yi, ZHENG Bo-yuan. Energy saving performance of hydraulic hybrid system with AMESim [J]. 吉林大学学报(工学版), 2013, 43(05): 1264-1270.
[12] YAO Yun-shi, LIU Long, FENG Zhong-xu, SHEN Jian-jun, CHEN Shi-bin. Simulation of hybrid power system for tandem vibratory rollers [J]. 吉林大学学报(工学版), 2013, 43(04): 871-876.
[13] YAO Liang, CHU Liang, ZHOU Fei-kun, LIU Ming-hui, ZHANG Yong-sheng, WEI Wen-ruo. Simulation and analysis of potential of energy-saving from braking energy recovery of electric vehicle [J]. 吉林大学学报(工学版), 2013, 43(01): 6-11.
[14] HUANG Wei-zhong, GUO Li-shu, SHI Zheng-tang, YANG Xiong, HUANG Guo-xing, PAN Zhi-hui. Dynamic response of electric vehicle braking system based on electronically controlled hydraulic braking system [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 13-16.
[15] ZHAO Ding-xuan, CHEN Ming-dong, DAI Qun-liang, ZHANG Er-ping, XU Chun-bo. System of arm potential energy recovery in hybrid hydraulic excavators [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 150-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!