Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2469-2483.doi: 10.13229/j.cnki.jdxbgxb.20221510

Previous Articles    

Seismic performance of stiffness enhanced metal coupling beam damper

Wei-song YANG1,2(),An ZHANG1,2,Wei-xiao XU1,2,Hai-sheng LI3,Ke DU4,5   

  1. 1.School of Civil Engineering,Qingdao University of Technology,Qingdao 266033,China
    2.Marine Environment Concrete Technology Engineering Research Center of Ministry of Education,Qingdao University of Technology,Qingdao 266033,China
    3.Technology Center Department,Ronghua Qingdao Construction Technology Co. ,Ltd. ,Qingdao 266500,China
    4.Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,China
    5.Key Laboratory of Earthquake Engineering and Engineering Vibration,China Earthquake Administration,Harbin 150080,China
  • Received:2022-11-25 Online:2024-09-01 Published:2024-10-28

Abstract:

In order to control the residual displacement of connected wall structures with connected beam metal dampers and promote the formation of the overall yield mode of the structure system, a metal damper based on the combination of sliding joints is proposed in this paper. The seismic performance of the damper is studied comprehensively by pseudo-static test, and the characteristics of the phased yield and stiffness enhancement are verified. The experimental results show that the damper can not only achieve the effect of step-by-step yield and stiffness enhancement, but also has good deformation capacity and energy dissipation performance, and can be optimized according to the parameters of slip distance and rectangular shear plate thickness. Further, a numerical comparison model of a new type of energy-dissipating beam-jointed wall structure system is established for dynamic time-history analysis. The results show that the proposed damper can control the residual displacement by strengthening the second-order stiffness in rare earthquakes, which is conducive to strengthening the collapse resistance of the structural system under extreme earthquakes and achieving the purpose of easy repair after extreme earthquakes.

Key words: structural engineering, stiffness enhanced damper, staged yielding, residual displacement, energy dissipation coupling beam

CLC Number: 

  • TU352.1

Fig.1

Schematic diagram of the stiffness-enhanced damper"

Table 1

Specimen sizes of stiffness enhanced dampers"

试件编号U型板半圆弧半径d/mmU型板宽度w1/mmU型板平直段长度l/mmU型板厚度t1/mm矩形板高度h/mm矩形板宽度w2/mm矩形板厚度t2/mm矩形盖板长度L/mm滑移距离s/mm二阶屈服比η
T15520010010100609100100.45
T2552001001010060980200.51
T35520010010100606100100.58
T45520010010

Fig.2

Construction and size of specimens (unit:mm)"

Fig.3

Physical view of the specimens"

Table 2

Test results of mechanical properties of materials"

试样编号试样厚度t/mm材料屈服强度fy/MPa材料抗拉强度fu/MPa

材料

屈强比fy/fu

材料弹性模量E/GPa

断后伸长率

δ/%

16216.23329.970.66205.1033.87
29210.87324.930.65202.5031.14
310207.91321.390.65192.4028.33

Fig.4

Test setup"

Fig.5

Plane outer limit device"

Fig.6

Time history of loading"

Fig.7

Strain gauge (strain rosette) arrangement"

Fig.8

Displacement meter setting"

Table 3

Relative displacement of the upper and lower connection plates at the point of yielding"

试件弯曲板测点1、5屈服相对位移/mm弯曲板测点2、4屈服相对位移/mm剪切板测点1、5屈服相对位移/mm剪切板测点2、4屈服相对位移/mm
T1491011
T24162021
T3491012
T4416

Fig.9

Failure form of specimens"

Table 4

Experimental data of the specimens"

试件一阶屈服位移/mm二阶屈服位移/mm剪切板开裂位移/mm剪切板断裂位移/mm
T13.8410.312226
T23.4520.282840
T33.2710.332226
T43.01

Fig.10

Hysteretic curve"

Fig.11

Skeleton curve"

Fig.12

Equivalent viscous damping ratio"

Fig.13

Finite element model of specimen T1 and T4"

Fig.14

Comparison of hysteresis curves between test and simulation"

Fig.15

Development process of equivalent plastic strain of specimen T1"

Fig.16

Calculation diagram of elastic stage of constrained U-shaped bending plate"

Fig.17

Calculation diagram of rectangular shear plate"

Fig.18

Restoring model"

Fig.19

Comparison between experimental skeleton curve and bilinear restoring force model"

Fig.20

Reinforcement of shear wall and coupling beam"

Table 5

Dimensions for stiffness-enhanced damper"

类型U型板半圆弧半径d/mm

U型板宽度

w1/mm

U型板

平直段长度

l/mm

U型板

厚度

t1/mm

矩形板

高度

h/mm

矩形板宽度w2/mm

矩形板

厚度

t2/mm

矩形盖板长度

L/mm

滑移

距离

s/mm

二阶屈服比η
刚度增强型602001002212010010110100.62
普通U型6020010022

Fig.21

Elevation and structural model of 12-storey coupling wall"

Fig.22

Maximum inter-storey displacement angle of the structure under frequent earthquakes"

Fig.23

Maximum inter-story displacement angle of the structure under fortification earthquakes"

Fig.24

Maximum inter-story displacement angle of structures under extremely rare earthquakes"

Fig.25

Residual deformation of structure under extremely rare earthquakes"

Table 6

DCF values of the structure"

地震波结构类型多遇地震设防地震极罕遇地震
Kobe波原始结构1.1851.1561.199
普通消能结构1.2081.1471.213
新型消能结构1.1941.1561.135
Imperial Valley波原始结构1.1931.2291.171
普通消能结构1.2251.3111.205
新型消能结构1.2231.3131.115
人工波原始结构1.1901.1151.128
普通消能结构1.2071.1691.135
新型消能结构1.2061.1481.085
1 Fortney P J, Shahrooz B M, Rassati G A. Large-scale testing of a replaceable "fuse"steel coupling beam[J]. Journal of Structural Engineering, 2007, 13(12):1801-1807.
2 吕西林,陈云,蒋欢军. 新型可更换连梁研究进展[J]. 地震工程与工程振动, 2013, 33(1):8-15.
Xi-lin Lyu, Chen Yun, Jiang Huan-jun, et al. Research progress in new replaceable coupling beams[J]. Earthquake Engineering and Engineering Vibration, 2013, 33(1):8-15.
3 滕军,马伯涛,李卫华,等. 联肢剪力墙连梁阻尼器伪静力试验研究[J]. 建筑结构学报, 2010, 31(12):92-100.
Teng Jun, Ma Bo-tao, Li Wei-hua,et al. Pseudo-static test for coupling beam damper of coupled shear wall structures[J]. Journal of Building Structures, 2007, 31(12):92-100.
4 熊谷仁志,島崎和司,林静雄.中央部に鋼材ダンパーを有するRC境界梁の復元力特性[J]. 日本建築学会構造系論文典, 2009, 74(643):1677-1684.
5 熊谷仁志,島崎和司,林静雄.中央部に鋼材ダンパーを有するRC 境界梁に関する実験的研究[J] .日本建築学会構造系論文典, 2009, 74(638):755-763.
6 王德斌,白海峰,付兴,等. 一种新型扭转金属阻尼器及其减震性能分析[J]. 东南大学学报: 自然科学版, 2022, 52(1): 74-82.
Wang De-bin, Bai Hai-feng, Fu Xing, et al. A new type of torsional metal damper and its shock absorption performance analysis[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(1):74-82.
7 黄海新,潘首成,程寿山,等. 变截面屈服L形金属阻尼器力学性能试验研究[J]. 地震工程与工程振动, 2020, 40(4):17-24.
Huang Hai-xin, Pan Shou-cheng, Cheng Shou-shan, et al. Experimental study on mechanical properties of variable cross-section yield L-shaped metal damper[J]. Earthquake Engineering and Engineering Vibration, 2020, 40(4):17-24.
8 布占宇, 何杰, 俞斌武. 一种新型自复位黏滞阻尼器的性能及应用[J].吉林大学学报: 工学版, 2023, 53(11): 3141-3150.
Bu Zhan-yu, He Jie, Yu Bin-wu. Performance and application of novel self-centering viscous damper[J]. Journal of Jilin University (Engineering and Technaology Edition), 2023,53(11):3141-3150.
9 范圣刚, 丁智霞, 舒赣平, 等. 新型两阶段耗能开孔式低屈服点钢耗能装置试验研究[J]. 东南大学学报: 自然科学版, 2016, 41(1): 110-117.
Fan Sheng-gang, Ding Zhi-xia, Shu Gan-ping, et al. Experimental study on new open-pore two-stage energy dissipation device with low yield point steel[J]. Journal of Southeast University (Natural Science Edition), 2016, 41(1): 110-117.
10 吴山, 何浩祥, 兰炳稷, 等. 多阶段屈服及失效型金属套管阻尼器性能试验及分析[J]. 土木工程学报, 2022, 55(12): 36-46.
Wu Shan, He Hao-xiang, Lan Bing-ji, et al. Experimental study and analysis on performance of metal tube damper with multi-stage yield and failure[J]. Journal of Civil Engineering,2022, 55(12): 36-46.
11 陈云, 蒋欢军, 刘涛, 等. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
Chen Yun, Jiang Huan-jun, Liu Tao, et al. Study on the seismic performance of graded yielding metal dampers[J]. Engineering Mechanics, 2019, 36(3):53-62.
12 Sahoo D R, Singhal T, Taraithia S S, et al. Cyclic behavior of shear-and-flexural yielding metallic dampers[J]. Journal of Constructional Steel Research, 2015, 114:247-257.
13 刘丹. 新型混合联肢墙结构抗震性能及可恢复能力研究[D]. 北京: 清华大学土木工程学院, 2017.
Liu Dan. Study on seismic performance and resilience of new hybrid coupled wall structure[D]. Beijing : College of Civil Engineering, Tsinghua University, 2017.
14 .金属材料 拉伸试验 第1部分:室温试验方法 [S].
15 . 建筑抗震试验规程 [S].
16 .混凝土物理力学性能试验方法标准 [S].
17 种迅,侯林兵,陈曦,等. U型金属阻尼器受力性能和数值模拟分析方法研究[J]. 建筑结构, 2021, 51(1): 114-120.
Zhong Xun, Hou Lin-bing, Chen Xi, et al. Research on mechanical performance and numerical simulation analysis method of U-shaped metal damper[J]. Building Structure, 2021, 51(1): 114-120.
18 杨林志. 两阶段工作软钢消能器力学性能理论及试验研究[D]. 南京:东南大学土木工程学院, 2015.
Yang Lin-zhi. Theoretical and experimental study on mechanical properties of two-stage working mild steel energy dissipator[D]. Nanjing: School of Civil Engineering, Southeast University, 2015.
19 . 建筑抗震设计规范 [S].
20 曲哲. 摇摆墙-框架结构抗震损伤机制控制及设计方法研究[D]. 北京: 清华大学土木工程学院, 2010.
Qu Zhe. Research on seismic damage mechanism control and design method of rocking wall-frame structure[D].Beijing: College of Civil Engineering, Tsinghua University, 2010.
[1] Qi-wu YAN,Zhong-liang ZOU. Hybrid algorithm for seismic energy-dissipated structures based on optimal placement of dampers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2267-2274.
[2] Feng-guo JIANG,Yu-ming ZHOU,Li-li BAI,Shuang LIANG. Improved krill algorithm and its application in structural optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2256-2266.
[3] Guang-tai ZHANG,Cheng-xiao ZHOU,Shi-tuo LIU. Restoring force model of fiber lithium slag concrete column in saline soil environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1944-1957.
[4] Yan-song DIAO,Yi-jian REN,Yuan-qiang YANG,Ling-yun ZHAO,Xiu-li LIU,Yun LIU. Experimental on seismic performance of replaceable splicing steel beam-column joints with friction energy dissipation components [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1643-1656.
[5] Xue-ping FAN,Yue-fei LIU. Bridge extreme stress dynamic prediction based on improved Gaussian mixed particle filter new algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1038-1044.
[6] Yi-fan LIU,Zhi-wei MIAO,Chen SHEN,Xiang-dong GENG. Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1007-1015.
[7] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Time⁃variant reliability analysis of bridge members based on Gaussian Copula⁃Bayesian dynamic models [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 485-493.
[8] Xue-ping FAN,Heng ZHOU,Yue-fei LIU. Multi⁃process Bayesian dynamic combinatorial prediction of time⁃variant reliability for bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2332-2338.
[9] Zheng-wei GU,Pan ZHANG,Dong-ye LYU,Chun-li WU,Zhong YANG,Guo-jin TAN,Xiao-ming HUANG. Earthquake⁃induced residual displacement analysis of simply supported beam bridge based on numerical simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1711-1718.
[10] Er-gang XIONG,Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN. Experiment on cracks in reinforced concrete beams based on digital image correlation technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1094-1104.
[11] Xiao-dong WANG,Ning-jing LI,Qiang LI. Experimental on crushing of concrete beams by high⁃voltage pulse discharge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 496-504.
[12] Ya-chuan KUANG,Li-bin CHEN,Chao-ju LI,Yu-hao HE. Analysis of mechanical properties of stud shear connectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 538-546.
[13] Li-zhao DAI,Liang ZHOU,Xiao-wen YANG,Lei WANG. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2886-2896.
[14] Yun-peng CHU,Xin-hui SUN,Ming LI,Yong YAO,Han-jie HUANG. Wind pressures on a circular hyperbolic⁃paraboloid roof subjected to a simulated downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1826-1833.
[15] Yong YAO,Liu-feng SU,Ming LI,Yun-peng CHU,Han-jie HUANG. Wind load characteristics of double⁃sided spherical shell roof under downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 615-625.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!