Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2708-2722.doi: 10.13229/j.cnki.jdxbgxb.20221454

Previous Articles    

Design and test of secondary conveyor separator device for sweet potato combine harvester

Ran-bing YANG1,2(),Jian ZHANG2,Shu-qi SHANG2(),Guang-bo TIAN2,Yu-ming ZHAI2,Zhi-guo PAN2   

  1. 1.College of Mechanical and Electrical Engineering,Hainan University,Haikou 5702283,China
    2.College of Mechanical and Electrical Engineering,Qingdao Agricultural University,Qingdao 266109,China
  • Received:2022-11-14 Online:2024-09-01 Published:2024-10-29
  • Contact: Shu-qi SHANG E-mail:yangranbing@163.com;sqshang@qau.edu.cn

Abstract:

For sweet potato two-stage combine harvester operation, the secondary conveyor separator device injures potato seriously, and the effect of soil and sweet potato separation is poor. A high and low interval secondary conveyor separator device was designed. By means of structural parameters and kinematic analysis, the key factors of the operational effect of the secondary conveyor separator were derived. At the same time, the value range of each influencing factor was determined. Based on a quadratic orthogonal rotation combination test, the value of the best factors for the test index was drawn. The field harvest test shows that the potato injury rate is 0.797%, and the soil removal rate is 74.839%,in the case of the speed of high and low interval secondary conveyor separator device is 0.6 m/s, the vibration amplitude is 26.2 mm, and the vibration frequency is 6.6 Hz. The results of the study can provide a reference for the structure improvement and operation parameters optimization of the two-stage sweet potato combine harvester.

Key words: agricultural engineering, sweet potato combine harvester, conveyor separator device, kinematic analysis, high and low interval type

CLC Number: 

  • S225.7

Fig.1

Sweet potato two-stage combine harvester"

Fig.2

Secondary conveyor separator device"

Fig.3

Schematic diagram of transmission system"

Table 1

Main technical parameters of secondary conveyor separator device"

参数数值
尺寸(长×宽×高)/(mm × mm × mm)1 600×940×285
倾角/(°)0
输送链速度可调范围/(m·s-10~1.2
抖动器振动幅度/mm0~26.2
抖动器振动频率可调范围/Hz0~7.5
杆条直径/mm11
杆条水平间距/mm45
杆条竖直间距/mm38

Fig.4

Schematic diagram of a group of high and low interval rods arrangement"

Fig.5

Contact schematic diagram of sweet potato and rod"

Fig.6

Jitter"

Fig.7

Schematic diagram of sweet potato centroid position"

Fig.8

Probability diagram of sweet potato in the area of curved rod when it is stable"

Fig.9

Schematic diagram of collision analysis between sweet potato and rod"

Fig.10

Influence of short axis radius of sweet potato on impact rebound angle and minimum rebound velocity"

Fig.11

Schematic diagram of action effect of jitter"

Fig.12

Analysis of collision velocity between sweet potato and curved rod"

Fig.13

Fitting diagram of influence of vibration amplitude of jitter and radius of sweet potato stub shaft on vibration frequency"

Fig.14

Schematic diagram of secondary collision motion between sweet potato and rod"

Fig.15

Influence of vibration amplitude of jitter and radius of sweet potato stub shaft on maximum and minimum frequency"

Fig.16

Prototypes and test sites"

Table 2

Test factors and levels"

水平试验因素

振动幅度

X1/mm

振动频率

X2/Hz

线速度

X3/(m·s-1

1.68240.007.000.80
135.956.570.72
030.005.950.60
-124.055.330.48
-1.68220.004.900.40

Table 3

Test scheme and results"

序号试验因素

伤薯率

Y1/%

去土率

Y2/%

X1/mmX2/Hz

X3/

(mm·s-1

130.004.900.600.7573.07
230.005.950.600.8474.00
330.005.950.800.8776.43
430.005.950.600.8074.41
530.005.950.600.7675.97
620.005.950.600.6272.10
730.005.950.600.8375.72
830.005.950.600.7874.89
930.007.000.600.9177.65
1030.005.950.400.7574.96
1135.956.570.721.0677.70
1235.955.330.720.8976.43
1335.955.330.480.8675.27
1430.005.950.600.8075.26
1524.055.330.480.6571.04
1635.956.570.481.0579.25
1724.055.330.720.7073.27
1830.005.950.600.8574.40
1930.005.950.600.7874.79
2040.005.950.601.0179.05
2130.005.950.600.8275.46
2224.056.570.720.7674.86
2324.056.570.480.7373.57

Table 4

Variance analysis of regression equation"

来源伤薯率Y1去土率Y2
平方和自由度均方FP平方和自由度均方FP
模型0.266 490.029 634.71<0.000 1**83.8699.3226.56< 0.000 1**
X10.205 710.205 7241.15<0.000 1**55.77155.77159.01< 0.000 1**
X20.043 310.043 350.79<0.000 1**21.34121.3460.85< 0.000 1**
X30.007 610.007 68.890.010 6*2.3012.306.550.023 8*
X1X20.006 110.006 17.090.019 5*0.159 610.159 60.455 10.511 8
X1X30.000 210.000 20.234 50.636 31.9111.915.450.036 3*
X2X30.000 210.000 20.234 50.636 31.6711.674.750.048 3*
X120.000 710.000 70.854 90.372 00.242 810.242 80.692 20.420 4
X220.002 310.002 32.720.123 20.036 010.036 00.102 60.753 8
X320.000 410.000 40.466 90.506 40.438 110.438 11.250.284 0
残差0.011 1130.000 9--4.56130.350 8--
失拟项0.003 750.000 70.797 10.581 11.0650.211 60.483 50.780 2
误差0.007 480.000 9--3.5080.437 7--
总和0.277 522---88.4222---

Fig.17

Effect of interaction factors on the rate of damaged potato and the rate of soil removal"

Table 5

Comparison test results"

项目直杆条二级输送分离装置实测值高低间隔式二级输送分离装置实测值
伤薯率%去土率%伤薯率%去土率%
平均值1.09371.5370.79774.839
11.1272.080.8675.43
21.1170.100.7874.41
31.0172.300.7674.78
41.2070.950.8874.82
51.0171.320.8374.47
61.0372.390.8174.34
71.0572.850.7375.44
81.0871.140.7275.10
91.1470.560.8175.33
101.1871.680.7974.27
1 Rahmawati N, Sipayung R, Widya R. Analysis of yields quantity and quality of several sweet potatoes genotypes at different harvest ages[J]. Earth and Environmental Science, 2021, 782(4): 42047.
2 Gakige J K, Gachuri C, Butterbach-Bahl K, et al. Early vine harvesting of dual-purpose sweet potato (Ipomoea batatas) increases feeding quality and total biomass without comprising tuber production[J]. African Journal of Food, Agriculture, Nutrition and Development, 2020, 20(2): 15538-15548.
3 张友良,汪兆辉,冯绍元,等. 覆膜滴灌条件下滴灌湿润比和施氮量对甘薯生长的影响[J]. 农业机械学报, 2021, 52(7): 261-270.
Zhang You-liang, Wang Zhao-hui, Feng Shao-yuan, et al. Effects of soil wetted percentages and nitrogen fertilizations on sweet potato growth under drip irrigation with film mulching[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(7): 261-270.
4 俞国红,郑航,薛向磊. 自适应仿形甘薯削皮机优化设计与试验[J]. 农业机械学报, 2021, 52(3): 135-142.
Yu Guo-hong, Zheng Hang, Xue Xiang-lei. Optimization design and experiment of auto-adaptive profiling sweet potato peeler[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(3): 135-142.
5 王欣,李强,曹清河,等. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483-492.
Wang Xin, Li Qiang, Cao Qing-he, et al. Current status and future prospective of sweetpotato production and seed industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
6 殷元元,王政增,杨然兵,等. 马铃薯收获机输送链仿真分析与参数优化[J]. 农业工程, 2020, 10(10): 79-83.
Yin Yuan-yuan, Wang Zheng-zeng, Yang Ran-bing, et al. Simulation analysis and parameter optimization of potato harvester conveyor Chain[J]. Agricultural Engineering, 2020, 10(10): 79-83.
7 王冰,胡志超,胡良龙,等. 甘薯联合收获机的研究现状及发展[J]. 江苏农业科学, 2018, 46(4): 11-16.
Wang Bing, Hu Zhi-chao, Hu Liang-long, et al. Research status and development of sweet potato combine harvester[J]. Jiangsu Agricultural Sciences, 2018, 46(4): 11-16.
8 张子瑞,刘贵明,李禹红. 国内外甘薯收获机械发展概况[J]. 农业工程, 2015, 5(3): 13-15.
Zhang Zi-rui, Liu Gui-ming, Li Yu-hong. Development situation of sweet potato harvester at home and abroad[J]. Agricultural Engineering, 2015, 5(3): 13-15.
9 申海洋,王冰,胡良龙,等. 4UZL-1型甘薯联合收获机薯块交接输送机构设计[J]. 农业工程学报, 2020, 36(17): 9-17.
Shen Hai-yang, Wang Bing, Hu Liang-long, et al. Design of potato connecting and conveying mechanism for 4UZL-1 type sweet potato combine harvester [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 9-17.
10 申海洋,王公仆,胡良龙,等. 4UZL-1型甘薯联合收获机刮板链提升机构设计与台架试验[J]. 中国农机化学报, 2021, 42(9): 7-17.
Shen Hai-yang, Wang Gong-pu, Hu Liang-long, et al. Design and bench test of scraper chain lifting mechanism of 4UZL-1 sweet potato combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 7-17.
11 刘承龙. 甘薯联合收获输送分离装置设计及损伤规律研究[D]. 泰安: 山东农业大学机械电子工程学院, 2021.
Liu Cheng-long. Study on design and damage law of sweet potato combine harvester[D]. Taian: College of Mechanical and Electronic Engineering, Shandong Agricultural University, 2021.
12 吕金庆,田忠恩,杨颖,等. 4U2A型双行马铃薯挖掘机的设计与试验[J]. 农业工程学报, 2015, 31(6): 17-24.
Lv Jin-qing, Tian Zhong-en, Yang Ying, et al. Design and experimental analysis of 4U2A type double-row potato digger [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 17-24.
13 孙贺. 升运链式马铃薯挖掘机输送分离装置的设计与试验研究[D]. 哈尔滨: 东北农业大学工程学院, 2019.
Sun He. Design and experimental research on transporting and separating device of lifting chain potato digger [D]. Harbin: College of Engineering, Northeast Agricultural University, 2019.
14 高国华,谢海峰,李博文,等. 甘薯跌落碰撞损伤试验研究与分析[J]. 中国农机化学报, 2019, 40(9): 85-90.
Gao Guo-hua, Xie Hai-feng, Li Bo-wen, et al. Experimental study and analysis on collision damage of sweet potato in drop[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 85-90.
15 胡奔. 马铃薯跌落损伤机理与防损伤装置研究[D]. 成都: 西华大学机械工程学院, 2018.
Hu Ben. Study on potato dropping damage mechanism and damage-proof device[D]. Chengdu: School of Mechanical Engineering, Xihua University, 2018.
16 李东波,刘莉莎,周全卢,等. 四川丘陵地区适宜机械化甘薯新品种筛选[J]. 安徽农业科学, 2021, 49(8): 30-31.
Li Dong-bo, Liu Li-sha, Zhou Quan-lu, et al. Selection of new varieties of sweet potato suitable mechanization in hilly areas of Sichuan Province[J]. Journal of Anhui Agricultural Sciences, 2021, 49(8): 30-31.
17 吕金庆,孙贺,兑瀚,等. 粘重土壤下马铃薯挖掘机分离输送装置改进设计与试验[J]. 农业机械学报, 2017, 48(11): 146-155.
Lv Jin-qing, Sun He, Han Dui, et al. Design and experiment on conveyor separation device of potato digger under heavy soil condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 146-155.
18 葛大萌. 马铃薯收获与残膜回收联合作业机的设计[D]. 泰安: 山东农业大学机械电子工程学院, 2016.
Ge Da-meng. Design of the potato recovery and plastic film collector combined operating machine[D]. Taian: College of Mechanical and Electronic Engineering, Shandong Agricultural University, 2016.
19 张德学,秦喜田,梁荣庆,等. 一种定量堆放式马铃薯收获机的研制[J]. 农机化研究, 2019, 41(12): 74-79.
Zhang De-xue, Qin Xi-tian, Liang Rong-qing, et al. Design of a quantitative stacking type of potato harvester[J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 74-79.
20 程祥勋. 新型甘薯收获机关键装置设计与试验[D]. 泰安: 山东农业大学机械电子工程学院, 2019.
Cheng Xiang-xun. Design and experiment of key equipment for new sweet potato harvester[D]. Taian: College of Mechanical and Electronic Engineering, Shandong Agricultural University, 2019.
21 陈小冬. 自走式甘薯联合收获机薯茎分离特性研究与机构优化[D]. 合肥: 安徽农业大学工学院, 2020.
Chen Xiao-dong. Study sweet-potato-stalk separation characteristics and structure optimization of in self-propelled sweet potato combine harvester [D]. Hefei: School of Engineering, Anhui Agricultural University, 2020.
22 李涛,周进,徐文艺,等. 4UGS2型双行甘薯收获机的研制[J]. 农业工程学报, 2018, 34(11): 26-33.
Li Tao, Zhou Jin, Xu Wen-yi, et al. Development of 4UGS2 type double-row sweet potato harvester [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 26-33.
23 蔡玉虎. 甘薯收获与秧蔓回收联合作业机的设计与仿真[D]. 泰安: 山东农业大学机械电子工程学院, 2017.
Cai Yu-hu. Design and simulation of joint operation of sweet potato harvest and vine recovery[D]. Taian: College of Mechanical and Electronic Engineering, Shandong Agricultural University, 2017.
24 杨小平,魏宏安,赵武云,等. 4U1600型集堆式马铃薯挖掘机设计与试验[J]. 农业机械学报, 2020, 51(6): 83-92.
Yang Xiao-ping, Wei Hong-an, Zhao Wu-yun, et al. Design and experiment of 4U 1600 set of pile type potato digger[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 83-92.
25 韩嫣,屈雪,黄东,等. 甘薯收获环节损失率测算及影响因素分析[J]. 西南农业学报, 2019, 32(6): 1383-1390.
Han Yan, Qu Xue, Huang Dong, et al. Harvest loss rate of sweet potato and its influencing factors[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(6): 1383-1390.
26 . 马铃薯收获机质量评价技术规范 [S].
27 杨然兵,杨红光,尚书旗,等. 拨辊推送式马铃薯收获机设计与试验[J]. 农业机械学报, 2016, 47(7): 119-126.
Yang Ran-bing, Yang Hong-guang, Shang Shu-qi, et al. Design and test of poking roller shoving type potato harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 119-126.
28 葛宜元,梁秋艳,王桂莲. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2015.
[1] Yuan-yi LIU,Sheng-jie YU,Bei XU,Xian-liang WANG,Fa-cheng SONG. Experimental study on in-situ tilling plow in facility agriculture based on discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1153-1165.
[2] Yan-an ZHANG,Yue-feng DU,Qing-feng MENG,Xiao-yu LI,Lei LIU,Zhong-xiang ZHU. Adaptive control of wet clutch pressure based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 852-864.
[3] Xue-shen CHEN,Yue-song XIONG,Nan CHENG,Xu MA,Long QI. Adaptive vibration type flexible mechanical weeding test between rice plants [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 375-384.
[4] Yong-shuo WANG,Jian-ming KANG,Qiang-ji PENG,Ying-kai CHEN,Hui-min FANG,Meng-meng NIU,Shao-wei WANG. Design and experiment of obstacle avoidance weeding machine for fruit trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2410-2420.
[5] Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[6] Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942.
[7] Shou-yong XIE,Xiao-liang ZHANG,Fan-yi LIU,Jun LIU,Xiao-liang YUAN,Wei LIU,Peng WANG. Kinetic analysis and experiment of seedling taking and throwing device based on mechanical properties of plug seedlings [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3293-3304.
[8] Duan-yang GENG,Yan-cheng SUN,Zong-yuan WANG,Qi-huan WANG,Jia-rui MING,Hao-lin YANG,Hai-gang XU. Design and experiment of plate tooth threshing device of corn grain direct harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3281-3292.
[9] Bin WANG,Bing-hui HE,Na LIN,Wei WANG,Tian-yang LI. Tea plantation remote sensing extraction based on random forest feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1719-1732.
[10] Duan-yang GENG,Yan-cheng SUN,Xiao-dong MU,Guo-dong ZHANG,Hui-xin JIANG,Jun-ke ZHU. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 693-702.
[11] Chang-kai WEN,Bin XIE,Zheng-he SONG,Jian-gang HAN,Qian-wen YANG. Design method of tractor durability accelerated structure test [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 703-715.
[12] Guo-wei WANG,Qing-hui ZHU,Hai-ye YU,Dong-yan HUANG. Silage traceability system based on digital agricultural machinery equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 242-252.
[13] Fang LIANG,De-cheng WANG,Yong YOU,Guang-hui WANG,Yu-bing WANG,Xiao-ming ZHANG,Jin-kui FENG. Design and experiment of root-cutter with fertilization and reseeding compound remediation machine for grassland [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 231-241.
[14] Xin-yan WANG,Quan JIANG,Feng LYU,Zheng-yang YI. Rollover stability of zero turning radius lawn mower based on parametric model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1908-1918.
[15] Qian CONG,Jin XU,Bo-shuai MA,Xiao-chao ZHANG,Ting-kun CHEN. Design and test of tractor hydraulic suspension system testing device based on virtual simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 754-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!