Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 242-252.doi: 10.13229/j.cnki.jdxbgxb20210392

Previous Articles    

Silage traceability system based on digital agricultural machinery equipment

Guo-wei WANG1(),Qing-hui ZHU1,2,Hai-ye YU1,2,Dong-yan HUANG1,2()   

  1. 1.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Bionics Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2021-04-30 Online:2022-01-01 Published:2022-01-14
  • Contact: Dong-yan HUANG E-mail:wangguowei@jlau.edu.cn;huangdy@jlu.edu.cn

Abstract:

To realize the information traceability of the whole process of silage production, this paper developed a mobile Internet of Things information acquisition terminal based on digital agricultural machinery equipment and a ZigBee-based silage information monitoring terminal. The multi-sensors were used to collect the sowing amount, fertilizer amount, drug amount and plant growth amount in the planting process. Also the temperature and humidity, oxygen concentration, carbon dioxide concentration and pH value were collected in the storage process. The double terminals were planted at the bottom of the silage traceability platform. Combined with HACCP system, the whole process of information collection, monitoring and early warning of fermentation information of silage from planting site to the silage cellar was realized. The platform is developed based on B/S architecture, using Java language to develop on the.NET framework. The database was SQL Server 2016,and the Servers were Ali Cloud 2 core 4G and Tencent Cloud 2 core 4G. Using QR code as label information, the whole process information of silage production supply chain can be traced. At the same time,the system has a quality and safety warning mechanism to ensure the safety and reliability of silage.The traceability platform based on WeChat applet was developed under the unified database,which expanded the way of consumer traceability.The system was tested in a silage production enterprise in Jilin Province, and the results show that the system could effectively collect the information of silage corn planting process and silage system in the silo,the nutrient loss rate was reduced to 8%~10%.

Key words: agricultural engineering, traceability system, data acquisition, silage, sensor

CLC Number: 

  • S232.3

Table 1

Silage corn straw feed process diagram"

玉米品种追溯单元主要内容
强盛青贮30产地信息产地代码、种植者档案、产地环境监测(灌溉水、加工水、土壤和空气质量)等
整地信息整地时间、方式
种植育苗信息品种、种子处理方法、播种时间、地点、方式、肥料和农药使用
田间信息灌溉水、植物生长调节剂、肥料和农药的使用
农业投入信息病虫害种类及发生的时间、地点,农药的采购及使用,施用植物生长调节剂、肥料种类及地点,费用
采收信息产品名称、采收人员、时间、地点、数量、品质、现场处理及运输
青贮过程信息加工时间、数量,温湿度,二氧化碳浓度、氧气浓度、pH值
贮存信息密封时间、环境条件、责任人、位置
包装信息开启时间、数量、环境条件、规格
产品检验信息产品来源、检验日期、检验机构、产品标准、产品批次号和检验结果

Table 2

Silage corn straw feed analysis diagram"

关键控制点危害分析阈值监测预防措施信息上传
内容方法频率
产地环境

化学危害:工农业

污染、城市废弃物、土壤中重金属、农药残留

GB15618定点监测县级农业部门定点监测查找原因,针对解决,无效者更换种植地利用Web API获取
播种量

物理危害:产量不足

化学危害:成熟度不够

适度,不宜太过稠密定点监测PVDF传感器每次播种前PVDF传感器监测,漏重播报警4G模块
施肥量化学危害:施加过量肥料根据专家系统设定定点监测CY12?02PK型 转速传感器每次施肥消除超量,过量报警4G模块
施药量化学危害:喷洒过多农药根据专家系统设定定点监测FS300A型流量 传感器每次施药过量报警4G模块
植物生长量生物危害:养分含量不高生长到蜡熟期定点监测JHBM?H1型 称重传感器收获前期适时刈割4G模块
青贮玉米 秸秆pH值生物危害:抑制腐败细菌根据青贮质量标准实时监测BlueLine21型pH值传感器每3 min超过阈值范围报警利用4G模块 上传数据库
青贮玉米 温湿度化学危害:合适的乳酸菌生长环境根据青贮质量标准实时监测AM2305A型 温湿度传感器每3 min超过范围报警利用4G模块 上传数据库
青贮窖O2浓度化学危害:防止氧气过多,产生腐败细菌根据青贮质量标准实时监测KE-25型O2浓度传感器每3 min超过范围报警利用4G模块 上传数据库
青贮窖CO2浓度化学危害:过低易腐,保鲜根据青贮质量标准实时监测GMM221型CO2传感器每3 min超过范围报警利用4G模块 上传数据库

Fig.1

System chart"

Fig.2

Block diagram of planting land system"

Fig.3

Planting plot 10×10 grid map"

Fig.4

Field seeding test"

Fig.5

Field spraying test"

Fig.6

Remote monitoring interface"

Fig.7

Information traceability framework in the silo"

Fig.8

Fluctuation of CO2, O2 and pH with time"

Fig.9

Fluctuation of relative humidity and temperature with time"

Fig.10

Encoding representation of the example"

Fig.11

Mini-program traceability results"

Fig.12

Silage corn traceability system interface"

Table 3

Performance analysis of silage corn stalk feed traceability system"

系 统有无报警信息追溯信息管理质量管理
产地环境信息种植环节信息 关键信息青贮窖贮制 关键信息纠正措施物料损失实用性
传统方法人工查询人工检测16%~20%复杂、困难、耗时
某追溯系统手动录入温湿度、pH值解决方案少且固定12%~14%简单、节省、时间
本文追溯系统定时获取播种量、施肥量、喷药量、植物生长量O2、CO2、pH、温湿度内置专家解决方案且不断完善8%~10%简单、稳定、省时、省力、全面
1 李春杰, 李长胜, 孙双. 玉米青贮HACCP技术与青霉菌污染防治[J]. 农业系统科学与综合研究, 2009, 25(3): 361-363, 368.
Li Chun-jie, Li Chang-sheng, Sun Shuang. HACCP technology of corn silage and control of penicillium pollution [J]. Journal of Agricultural Systems Science and Comprehensive Research, 2009, 25(3): 361-363, 368.
2 霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究[J]. 农业工程学报, 2019, 35(13): 218-224.
Huo Li-li, Zhao Li-xin, Meng Hai-bo, et al. Comprehensive utilization potential of crop straw in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 218-224.
3 楚天舒, 杨增玲, 韩鲁佳. 中国农作物秸秆饲料化利用满足度和优势度分析[J]. 农业工程学报, 2016, 32(22): 1-9.
Chu Tian-shu, Yang Zeng-ling, Han Lu-jia. Satisfaction degree and dominance degree of forage utilization of crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 1-9.
4 李胜男, 纪雄辉, 邓凯, 等. 区域秸秆资源分布及全量化利用潜力分析[J].农业工程学报, 2020, 36(12): 221-228.
Li Sheng-nan, Ji Xiong-hui, Deng Kai, et al. Analysis of regional straw resource distribution and full quantitative utilization potential [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 221-228.
5 白焱龄. 影响玉米质量安全的主要因素及其控制策略[J]. 食品安全导刊, 2017, 10(33): 43.
Bai Yan-ling. Main factors affecting maize quality and safety and their control strategies [J]. China Food Safety Magazine, 2017, 10(33): 43.
6 李梦华. 基于先进传感技术精细观测青贮饲料氧胁迫反应与模型检验[D]. 北京:中国农业大学食品科学与营养工程学院, 2018.
Li Meng-hua. Fine observation of silage oxygen stress response and model test based on advanced sensing technology[D]. Beijing: School of Food Science and Nutritional Engineering, China Agricultural University, 2018.
7 马懿, 林靖, 李晨, 等. 国内外农产品溯源系统研究现状综述[J]. 科技资讯,2011, 8(27):158.
Ma Yi, Lin Jing, Li Chen, et al. Review on the research status of agricultural product traceability system at home and abroad [J]. Science and Technology Information, 2011, 8(27): 158.
8 Bai Hong-wu, Zhou Guang-hong, Hu Yi-nong, et al. Traceability technologies for farm animals and their products in China[J]. Food Control, 2017, 79: 35-43.
9 Badia-Melis R. Mishra P, Ruiz-García L. Food traceability: new trends and recent advances: a review[J]. Food Control, 2015, 57: 393-401.
10 傅泽田,邢少华,张小栓. 食品质量安全可追溯关键技术发展研究[J]. 农业机械学报, 2013, 44(7): 144-153.
Fu Ze-tian, Xing Shao-hua, Zhang Xiao-shuan. Research on key technology development of food quality and safety traceability[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 144-153.
11 杨秋. 影响青贮饲料品质因素分析[J]. 中国畜禽种业, 2020, 16(3): 74.
Yang Qiu. Analysis of factors affecting silage quality [J]. China Livestock and Poultry Breeding Industry, 2020, 16(3): 74.
12 Wang Xiang, Fu Da-qi, Zhang Xiao-shuan. Improving quality control and transparency in honey peach export chain by a multi-sensors-managed traceability system[J]. Food Control, 2018, 88: 169-180.
13 叶云, 胡月明, 赵小娟, 等. 基于改进动态扩展和位置服务的农产品追溯系统优化[J]. 农业工程学报, 2016, 32(13): 279-285.
Ye Yun, Hu Yue-ming, Zhao Xiao-juan, et al. Optimization of agricultural product traceability system based on improved dynamic expansion and location service [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 279-285.
14 黄东岩, 朱龙图, 贾洪雷, 等.基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168.
Huang Dong-yan, Zhu Long-tu, Jia Hong-lei, et al. Remote maize planting quality monitoring system based on GPS and GPRS [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 162-168.
15 高俊雷. 玉米秸秆新鲜度对其发酵饲料品质和肉牛生长效果的影响[D]. 长春:吉林大学动物科学学院, 2020.
Gao Jun-lei. Effects of corn straw freshness on the quality of fermented feed and the growth effect of beef cattle [D]. Changchun:College of Animal Sciences, Jilin University, 2020.
16 任志玲,张广全,林冬,等. 无线传感器网络应用综述[J].传感器与微系统, 2018, 37(3): 1-2, 10.
Ren Zhi-ling, Zhang Guang-quan, Lin Dong, et al. Review on application of WSNs [J]. Transducer and Microsystem, 2018, 37(3): 1-2, 10.
17 李锦龙, 李晓根, 于运渌, 等. 基于ZigBee和4G的空气质量远程监测系统设计[J]. 自动化与仪表, 2019, 34(2): 99-102.
Li Jin-long, Li Xiao-gen, Yu Yun-lu, et al. Design of remote air quality monitoring system based on ZigBee and 4G [J]. Automation & Instrumentation, 2019, 34(2): 99-102.
18 陈长喜,许晓华. 基于物联网的肉鸡可追溯与监管平台设计与应用[J].农业工程学报, 2017, 33(5): 224-231.
Chen Chang-xi, Xu Xiao-hua. Design and application of broiler traceability and supervision platform based on Internet of Things [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 224-231.
19 王宇. 基于QR码的食品溯源系统设计与实现[D]. 西安:西安电子科技大学计算机科学与技术学院, 2013.
Wang Yu. Design and implementation of food traceability system based on QR code [D]. Xi'an: School of Computer Science and Technology, Xi'an University of Electronic Science and Technology, 2013.
20 董玉德, 丁保勇, 张国伟, 等. 基于农产品供应链的质量安全可追溯系统[J].农业工程学报, 2016, 32(1): 280-285.
Dong Yu-de, Ding Bao-yong, Zhang Guo-wei, et al. Traceability system of quality and safety based on agricultural product supply chain [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 280-285.
[1] Fang LIANG,De-cheng WANG,Yong YOU,Guang-hui WANG,Yu-bing WANG,Xiao-ming ZHANG,Jin-kui FENG. Design and experiment of root-cutter with fertilization and reseeding compound remediation machine for grassland [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 231-241.
[2] Zhe-pu XU,Qun YANG. Short⁃term maintenance operation start time optimization based on real⁃time traffic map data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1763-1774.
[3] Xin-yan WANG,Quan JIANG,Feng LYU,Zheng-yang YI. Rollover stability of zero turning radius lawn mower based on parametric model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1908-1918.
[4] Liu ZHANG,Liang SHEN,Wen-hua WANG,He LIU. CMOS array imaging method of coordinated multichannel based on drift angle adjusting mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1476-1481.
[5] Chao CHENG,Jun FU,Zhi CHEN,Lu-quan REN. Sieve blocking laws and stripping test of corn grain harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 761-771.
[6] Qian CONG,Jin XU,Bo-shuai MA,Xiao-chao ZHANG,Ting-kun CHEN. Design and test of tractor hydraulic suspension system testing device based on virtual simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 754-760.
[7] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[8] Xue-shen CHEN,Zhu-jian HUANG,Xu MA,Long QI,Gui-jin FANG. Design and test of control system for rice mechanical weeding and seedling-avoiding control [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 386-396.
[9] Zhou-zhou LIU,Wen-xiao YIN,Qian-yun ZHANG,Han PENG. Sensor cloud intrusion detection based on discrete optimization algorithm and machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 692-702.
[10] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[11] Xiao-hui WENG,You-hong SUN,Shu-jun ZHANG,Jun XIE,Zhi-yong CHANG. Oil and gas detection method and experimental new technology based on bionic nasal chamber optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 382-388.
[12] En-ze LIU,Wen-fu WU. Monochrome fruit growth detection internet architecture based oncomprehensive indicator quality evaluation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2019-2026.
[13] Bin-bin YU,Liang HU,Ling CHI. Digital signature scheme against internal and external attack for wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1676-1681.
[14] Guang YAN,Jian-zhong LU,Kai-yu ZHANG,Fan-yong MENG,Lian-qing ZHU. Temperature decoupling large range fiber Bragg grating strain sensor [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1682-1688.
[15] Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!