Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3281-3292.doi: 10.13229/j.cnki.jdxbgxb.20220135

Previous Articles     Next Articles

Design and experiment of plate tooth threshing device of corn grain direct harvester

Duan-yang GENG1(),Yan-cheng SUN1,Zong-yuan WANG1,Qi-huan WANG1,Jia-rui MING1,Hao-lin YANG1,Hai-gang XU2   

  1. 1.College of Agricultural Engineering and Food Science,Shangdong University of Technology,Zibo 255022,China
    2.Shi Feng Group Co. ,Ltd. ,Liaocheng 252899,China
  • Received:2022-02-15 Online:2023-11-01 Published:2023-12-06

Abstract:

In order to meet the requirements of corn direct harvest with high moisture content in Huang Huai Hai area and solve the problems of grain damage and high non threshing rate in the process of direct harvest of existing corn series, combined with the characteristics of corn harvest in Huang Huai Hai area, a plate tooth threshing drum with spiral distribution of threshing tooth plate and threshing concave plate and a plate tooth longitudinal axial flow threshing device combined with circular tube grid threshing concave plate were designed. The rotating speed and diameter of the drum are determined. The stress of the grain in the threshing process of the newly developed plate tooth threshing element is analyzed. It is concluded that the grain crushing rate of the plate tooth threshing is lower than that of the nail tooth threshing. The length and height of the plate tooth are designed, and the main factors affecting the threshing performance are determined. Through the single factor test of 4YZ-6 corn grain harvester, the variation range of drum speed, threshing clearance and plate tooth length is obtained when threshing performance is good. The orthogonal experiment was carried out with the drum speed, threshing clearance and plate tooth length as the experimental factors. The regression equation and significance of the drum speed, threshing clearance and plate tooth length on the grain crushing rate and non threshing rate were obtained, and the experimental factors were analyzed by response surface analysis. The optimal parameter combination is determined: drum speed 350 r/min, threshing clearance 53 mm and plate tooth length 100 mm. Under this condition, the grain crushing rate of corn ear was 2.73%, and the non de purification rate was 0.41%, which met the relevant national standards.

Key words: agricultural engineering, corn threshing, threshing element, board of plate tooth, direct grain

CLC Number: 

  • S225.5

Fig.1

Threshing separation device based on low threshing damage of maize"

Fig. 2

Composition of concave lacing in low loss threshing round pipe"

Fig.3

Structure of low loss threshing unit"

Fig.4

Analysis of grain stress during threshing"

Fig.5

Field test process"

Fig.6

Influence of rotating speed of drum on grain breakage rate and undepurated rate"

Fig.7

Influence of threshing interval on grain breakage rate and undepurified rate"

Fig.8

Influence of plate tooth length on grain breakage rate and undepurification rate"

Table 1

Factors and factor levels of experiment"

水平因素
滚筒转速/(r·min-1脱粒间隙/mm板齿长度/mm
-13254890
035053100
137558110

Table 2

Test plan and results"

试验 序号试验因素水平考核指标
X1X2X3籽粒破碎率Y1/%未脱净率Y2/%
1-1-104.530.98
20113.110.87
30012.730.41
4-1103.701.21
5-1103.621.57
60-1-13.470.57
70002.790.62
81104.311.32
90002.850.62
1001-13.320.97
111-104.110.87
1210-14.011.17
131013.761.04
140002.880.65
150002.870.73
160002.890.67
17-1013.681.15

Table 3

Variance analysis on consistency of stubble height"

变异 来源离均差 平方和自由度均方FP
总和5.3216
模型5.2990.59157.32<0.0001***
X10.05410.05414.570.0066**
X20.1310.1333.72<0.0007***
X30.03710.0379.960.016*
X1X20.3110.3182.42<0.0001
X1X30.01310.0133.540.102
X2X34.76×10-314.76×10-31.270.2962
X122.9212.92780.11<0.0001
X220.6110.61163.71<0.0001
X329.79×10-319.79×10-32.620.1495
残差0.02673.73×10-3
失拟0.0236.61×10-34.190.1002
纯误差6.32×10-341.58×10-3

Table 4

Variance analysis of the loss rate of Broussonetia papyrifera"

变异 来源离均差 平方和自由度均方FP
总和1.5416
模型1.5090.1730.84<0.0001***
X10.03310.0336.010.0440*
X20.3810.3869.42<0.0001***
X30.05610.05610.310.0148*
X1X24.9×10-314.9×10-30.910.3728
X1X31.22×10-311.225×10-30.230.6486
X2X36.96×10-316.969×10-31.290.2936
X12111185.58<0.0001
X224.437×10-314.437×10-30.820.3951
X324.485×10-314.485×10-30.830.3927
残差0.03875.407×10-3
失拟0.03039.856×10-34.760.0829
纯误差8.280×10-342.07×10-3

Fig.9

Response surface of drum speed and threshing clearance to grain crushing rate"

Fig.10

Response surface of drum speed and threshing clearance to non threshing rate"

Fig.11

Response surface of drum speed and plate tooth length to grain crushing rate"

Fig.12

Response surface of drum speed and plate tooth length"

Fig.13

Response surface of threshing clearance and plate tooth length to grain crushing rate"

Fig.14

Response surface of threshing clearance and plate tooth length to non threshing rate"

1 陈志,郝付平,王锋德,等.中国玉米收获技术与装备发展研究[J].农业机械学报,2012,43(12): 44-50.
Chen Zhi, Hao Fu-ping, Wang Feng-de, et al. Research on corn harvesting technology and equipment development in China[J]. Journal of Agricultural Machinery, 2012, 43(12): 44-50.
2 高连兴,李飞,张新伟,等.含水率对种子玉米脱粒性能的影响机理[J].农业机械学报,2011,42(12): 92-96.
Gao Lian-xing, Li Fei, Zhang Xin-wei, et al. Mechanism of moisture content affect on corn seed thresin[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 92-96.
3 郝付平, 陈志.国内外玉米收获机械研究现状及思考[J].农机化研究, 2007, 29(10): 206-208.
Hao Fu-ping, Chen Zhi. Actuality of domestic and foreign corn harvester[J]. Journal of Agricultural Mechanization Research, 2007, 29(10): 206-208.
4 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报[J]. 作物杂志, 2014(2): 76-79.
Xie Rui-zhi, Lei Xiao-peng, Wang Ke-ru, et al. Preliminary report on mechanical harvest of summer maize seeds in Huang Huai Hai[J]. Journal of Crops, 2014(2): 76-79.
5 耿爱军, 杨建宁, 张兆磊, 等. 国内外玉米收获机械发展现状及展望[J].农机化研究,2016,38(4): 251-257.
Geng Ai-jun, Yang Jian-ning, Zhang Zhao-lei, et al. Development status and prospect of corn harvester at home and abroad[J]. Agricultural Mechanization Research, 2016, 38(4): 251-257.
6 相茂国.玉米籽粒直收机械适应性研究[D]. 淄博: 山东理工大学农业工程与食品科学学院,2014.
Xiang Mao-guo. Study on the adaptability of corn grain harvesting device[D]. Zibo: College of Agriculral Engineering and Food Science, Shandong University of Technology, 2014.
7 雷晓鹏. 黄淮海地区玉米机械收获籽粒可行性研究[D]. 保定: 河北农业大学农学院, 2015.
Lei Xiao-peng. Feasibility study on corn mechanical harvest in Huanghuaihai region[D]. Baoding: College of Agronomy, Hebei Agricultural University, 2015.
8 王建廷,李耀明,马征,等.玉米收获机械关键装置结构特点及发展趋势[J].农机化研究, 2019, 41(9): 1-8.
Wang Jian-ting, Li Yao-ming, Ma Zheng, et al. Structural characteristics and development trend of key equipment of corn harvesting machinery[J]. Journal of Agricultural Mechanization research, 2019, 41(9): 1-8.
9 王永刚, 张国海, 张恒, 等. 黄淮海地区夏玉米收获现状分析[J].中国农机化学报,2018,39(11): 112-115.
Wang Yong-gang, Zhang Guo-hai, Zhang Heng, et al. Analysis on current status of summer maize harvest in Huang-Huai-Hai area[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(11): 112-115.
10 苏媛,刘浩,徐杨,等.轴流式玉米脱粒装置钉齿元件优化与试验[J].农业机械学报,2018,49(): 258-265.
Su Yuan, Liu Hao, Xu Yang, et al. Optimization and test of axial flow corn threshing device pin tooth element[J]. Journal of Agricultural Machinery, 2018, 49(Sup.1): 258-265.
11 邸志峰,崔中凯,张华,等.纹杆块与钉齿组合式轴流玉米脱粒滚筒的设计与试验[J].农业工程学报,2018,34(1): 28-34.
Di Zhi-feng, Cui Zhong-kai, Zhang Hua, et al. Design and experiment of axial flow corn threshing drum with grain bar block and nail tooth combination[J]. Journal of Agricultural Engineering, 2018, 34(1): 28-34.
12 王志明. 横置差速轴流脱分选系统工作机理及设计研究[D]. 西安: 长安大学工程机械学院, 2017.
Wang Zhi-ming. Research on working mechanism and design of transverse differential axial flow separation system[D]. Xi'an: School of Construction Machinery, Chang'an University, 2017.
13 周海玲.玉米果穗物理力学性质研究及脱粒过程仿真分析[D]. 长春: 吉林大学生物与农业工程学院,2013.
Zhou Hai-ling. The physical and mechanical property research of corn ears and simulated analysis of corn threshing progress[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2013.
14 高连兴,李飞,张新伟,等.含水率对种子玉米脱粒性能的影响机理[J].农业机械学报, 2011,42(12): 92-96.
Gao Lian-xing, Li Fei, Zhang Xin-wei, et al. Mechanism of moisture content affect on corn seed thresing[J]. Transactions ofthe Chinese Society for Agricultural Machinery, 2011, 42(12): 92-96.
15 虞顺成,李耀明,马征,等.玉米籽粒直收中籽粒及穗轴破损形态研究[J].农机化研究,2019,41(10): 208-212.
Yu Shun-cheng, Li Yao-ming, Ma Zheng, et al. Study on damage of corn kernel and cob in corn kernel harvesting[J]. Journal of Agricultural Mechanization Research, 2019, 41(10): 208-212.
16 屈哲. 低损伤组合式玉米脱粒分离装置的研究[D]. 北京: 中国农业大学工学院,2018.
Qu Zhe.Research on combined maize threshing and separating device with low damade[D]. Beijing: College of Engineering, China Agricultural University, 2018.
17 相茂国,张道林,李春宁,等. 影响玉米脱粒性能的因素分析与研究[J].农机化研究,2015,37(1): 188-191.
Xiang Mao-guo, Zhang Dao-lin, Li Chun-ning,et al. Analysis of influence factor on corn threshing performance[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 188-191.
18 周海玲.玉米果穗物理力学性质研究及脱粒过程仿真分析[D].长春: 吉林大学生物与农业工程学院,2013.
Zhou Hai-ling. The physical and mechanical property research of corn ears and simulated analysis of corn threshing progress[D]. Changchun: College of Biological and Agricultural Engineering, Jilin University, 2013.
19 虞顺成.玉米脱粒过程中的籽粒破损试验与分析[D]. 镇江: 江苏大学农业工程学院, 2019.
Yu Shun-cheng. Corn kernel damage test and analysis of corn threshing process[D]. Zhenjiang: College of Agricultural Engineering, Jiangsu University, 2019.
20 李心平,熊师,耿令新,等.含水率对玉米果穗抗压特性的影响[J].农业工程学报, 2018, 34(2): 25-31.
Li Xin-ping, Xiong Shi, Geng Ling-xin, et al. Effect of moisture content on compressive properties of corn ear[J]. Journal of Agricultural Engineering, 2018, 34(2): 25-31.
21 Srivastava A K, Goering C E, Rohrbach R P, et al. Engineering Principles of Agricultural Machines[M]. 2nd ed. Michigan: Michigan State University Press, 1993.
22 Pužauskas E, Steponavičius D, Jotautienė E, et al. Substantiation of concave crossbar shape for corn ear threshing[J]. Mechanika, 2017, 22(6): 553-561.
23 Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshing process[J]. Biosystems Engineering, 2008, 99(4): 532-539.
24 Petkevichius S, Shpokas L, Steponavicius D. Substantiation of technology parameter of wet maize ear threshing[J]. Agronomy Research: Special Issue, 2008, 6: 271-280.
25 付君,张屹晨,程超,等.刚柔耦合式小麦脱粒弓齿设计及试验[J].吉林大学学报: 工学版, 2020, 50(2): 730-738.
Fu Jun, Zhang Yi-chen, Cheng Chao,et al. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
26 钱震杰, 金诚谦, 袁文胜, 等. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报: 工学版, 2021, 51(3): 1121-1130.
Qian Zhen-jie, Jin Cheng-qian, Yuan Wen-sheng, et al. Frictional impact dynamics model of threshing process between flexible teeth and grains[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1121-1130.
27 陈美舟, 徐广飞, 王传旭, 等. 纵轴流辊式组合玉米柔性脱粒分离装置设计与试验[J]. 农业机械学报, 2020, 51(10): 123-131.
Chen Mei-zhou, Xu Guang-fei, Wang Chuan-xu, et al. Design and experiment of longitudinal axial flow roller combined corn flexible threshing and separation device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 123-131.
28 王占滨, 王振伟, 张银平, 等. 纵轴流柔性锤爪式玉米脱粒装置设计与试验[J]. 农业机械学报, 2020, 51(): 109-117.
Wang Zhan-bin, Wang Zhen-wei, Zhang Yin-ping, et al. Design and experiment of longitudinal axial flow flexible hammer claw corn threshing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(Sup.2): 109-117.
29 耿端阳, 何珂, 王骞, 等. 横轴流式玉米柔性脱粒装置设计与试验[J]. 农业机械学报, 2019, 50(3): 101-108.
Geng Duan-yang, He Ke, Wang Qian, et al. Design and experiment of horizontal axial flow corn flexible threshing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (3): 101-108.
30 耿端阳, 谭德蕾, 于兴瑞, 等. 玉米柔性脱粒滚筒脱粒元件设计与试验[J]. 吉林大学学报: 工学版, 2020, 50(5): 1923-1933.
Geng Duan-yang, Tan De-lei, Yu Xing-rui, et al. Design and test of corn flexible threshing cylinder element[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1923-1933.
31 中国农业机械化科学研究院.农业机械设计手册(上册)[M]. 北京: 中国农业科学技术出版社,2007.
32 赵东元.可靠性工程与应用[M]. 北京: 国防工业出版社, 2009.
[1] Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[2] Yong-shuo WANG,Jian-ming KANG,Qiang-ji PENG,Ying-kai CHEN,Hui-min FANG,Meng-meng NIU,Shao-wei WANG. Design and experiment of obstacle avoidance weeding machine for fruit trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2410-2420.
[3] Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942.
[4] Shou-yong XIE,Xiao-liang ZHANG,Fan-yi LIU,Jun LIU,Xiao-liang YUAN,Wei LIU,Peng WANG. Kinetic analysis and experiment of seedling taking and throwing device based on mechanical properties of plug seedlings [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3293-3304.
[5] Bin WANG,Bing-hui HE,Na LIN,Wei WANG,Tian-yang LI. Tea plantation remote sensing extraction based on random forest feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1719-1732.
[6] Duan-yang GENG,Yan-cheng SUN,Xiao-dong MU,Guo-dong ZHANG,Hui-xin JIANG,Jun-ke ZHU. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 693-702.
[7] Chang-kai WEN,Bin XIE,Zheng-he SONG,Jian-gang HAN,Qian-wen YANG. Design method of tractor durability accelerated structure test [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 703-715.
[8] Guo-wei WANG,Qing-hui ZHU,Hai-ye YU,Dong-yan HUANG. Silage traceability system based on digital agricultural machinery equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 242-252.
[9] Fang LIANG,De-cheng WANG,Yong YOU,Guang-hui WANG,Yu-bing WANG,Xiao-ming ZHANG,Jin-kui FENG. Design and experiment of root-cutter with fertilization and reseeding compound remediation machine for grassland [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 231-241.
[10] Xin-yan WANG,Quan JIANG,Feng LYU,Zheng-yang YI. Rollover stability of zero turning radius lawn mower based on parametric model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1908-1918.
[11] Qian CONG,Jin XU,Bo-shuai MA,Xiao-chao ZHANG,Ting-kun CHEN. Design and test of tractor hydraulic suspension system testing device based on virtual simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 754-760.
[12] Chao CHENG,Jun FU,Zhi CHEN,Lu-quan REN. Sieve blocking laws and stripping test of corn grain harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 761-771.
[13] Xue-shen CHEN,Zhu-jian HUANG,Xu MA,Long QI,Gui-jin FANG. Design and test of control system for rice mechanical weeding and seedling-avoiding control [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 386-396.
[14] En-ze LIU,Wen-fu WU. Monochrome fruit growth detection internet architecture based oncomprehensive indicator quality evaluation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2019-2026.
[15] Jia⁃hao QIN,Zhen LI,Muneshi MITSUOKA,Eiji INOUE,Zheng⁃he SONG,Zhong⁃xiang ZHU. Significance variation of factorial effects on tractor stability employing scale⁃model⁃based experimental approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1236-1245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .