Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 74-83.doi: 10.13229/j.cnki.jdxbgxb.20230333

Previous Articles     Next Articles

Multi-objective optimization method of structural static displacement based on projection priority selection method

Kai MA(),Jian-hang SUN,Sen-kang YAN,Yan TAO,Wen-tao WANG,Gui-kai GUO()   

  1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2023-04-10 Online:2025-01-01 Published:2025-03-28
  • Contact: Gui-kai GUO E-mail:makai@jlu.edu.cn;ggk@jlu.edu.cn

Abstract:

In this paper, a multi-objective optimization method of structural static displacement based on projection priority selection method is proposed. Projection priority selection method is a parameter selection method that sorts the parameters according to the projection angle and projection length of the parameter sensitivity vector in a specific multidimensional subspace. The structural static sensitivity is calculated by the analytical method based on Epsilon algorithm and improved Newman series. In each iteration of the optimization method, the reasonable combination of parameters can be selected according to the given number of parameters and the modification of the corresponding parameters can be obtained. The optimal solution can be obtained through multiple iterations. This method is especially suitable for solving multi-objective structural optimization problems with limited number of parameters. In the example, the proposed method is used for multi-objective optimization of a truss structure. The optimization results were compared between the randomly selected parameter group and the parameter group selected by the method in this paper. The results show that the optimization results of the Projection priority selection method are more ideal. Examples further prove that the proposed optimization method has high engineering application value.

Key words: solid mechanics, sensitivity analysis, projection priority selection method, optimal amount of modification, Epsilon algorithm

CLC Number: 

  • O342

Fig.1

Epsilon algorithm calculation process(s=5)"

Fig.2

Flow chart of projection optimization method"

Fig.3

Structural diagram"

Table 1

Node displacement"

序号初始位移/mm目标位移/mm最优参数组/mm对照1组/mm对照2组/mm对照3组/mm对照4组/mm
A64,A79,A55A61,A2,A69,A40A23~A29A34~A40A29,A31,A21A34,A36,A38,A40A44~A50
1119.72115119.04119.57119.72119.64119.56
268.596468.0668.4968.5568.5468.48
397.569397.0097.4897.5797.4997.48
452.544852.0152.4552.4952.4852.44
568.146367.7468.1068.1868.0668.10
649.584549.0749.5149.5049.5249.50
744.754044.4944.7844.6544.6444.77
849.194448.6949.1249.1349.1549.12
953.654953.2553.5953.6253.5653.59
1043.693943.0743.5243.6843.6643.51
????????
5028.462328.2428.4928.4628.4728.49
51124.47119124.01124.30124.48124.40124.30
5269.606569.1569.4269.5669.5569.42
53113.42108113.00113.29113.43113.34113.28
5463.725963.3263.5863.6863.6663.57
55115.93111115.24115.79115.94115.86115.79
5684.207983.5183.9984.1784.1683.98
57130.54126130.09130.37130.56130.48130.36
58105.94101105.20105.68105.91105.90105.67
59110.96106110.27110.82110.94110.86110.81
6052.334752.1052.3652.3352.3452.36

Fig.4

First iteration displacement diagram after modifying sections A64, A79, A55, A61, A2, A69, A40"

Fig.5

First iteration displacement diagram after modifying sections A23~A29"

Fig.6

First iteration displacement diagram after modifying sections A34~A40"

Fig.7

First iteration displacement diagram after modifying sections A29, A31, A21, A34, A36, A38, A40"

Fig.8

First iteration displacement diagram after modifying sections A44~ A50"

Table 2

Mean square value of displacement error vector and error of different design parameter groups after the first iteration"

参数最优参数组对照1组对照2组对照3组对照4组
A64,A79,A55A61,A2,A69,A40A23~A29A34~A40A29,A31,A21A34,A36,A38,A40A44~A50
位移误差向量均方值φrms21 317.5861 444.7121 483.8311 466.2611 394.268
εl/%09.64812.61711.2835.819

Table 3

Each iteration is based on the mean square value of the displacement error vector after multiple iterations of the projection optimization method"

迭代次数1100200300400500621
位移误差向量均方值φrms21 317.586437.361159.22463.77644.07128.9265.838

Fig.9

Comparison of mean square values of displace- ment error vectors after multiple iterations"

Table 4

Mean square value of the displacement error vector after multiple iterations of the preferred parameter set obtained in the first iteration is used"

迭代次数157102050100
位移误差向量均方值φrms21 317.586340.721223.508267.7411 412.20511 806.77014 707.850

Fig.10

Finally optimized displacement cloud map"

Table 5

Cross-sectional areas of each truss after final optimization"

序号横截面积序号横截面积序号横截面积序号横截面积序号横截面积序号横截面积
162.95215172.5312963.79743161.8465763.96171115.542
2153.7971670.9453099.99144105.29158137.5217279.695
310.0001771.07931199.33045113.4345998.7617367.712
488.7841889.38232193.5974610.3306093.91574106.772
5113.47819103.6153395.6024710.00061113.1857586.581
6120.7172010.0003486.2514818.0996256.4447661.457
790.5092191.3903584.33249198.21263103.59877113.593
897.67422100.0713631.61350166.6116497.91578113.169
9120.82823115.44837104.56951268.3306598.74579106.079
10120.36724124.7623858.33152125.73366124.250
11125.84525104.9203986.91253119.00867134.266
12161.71426101.8424010.0005464.4026889.820
13151.28527118.1434186.4085557.7806962.970
1411.48028121.1874273.13156127.69670119.673

Table 6

Finally optimized displacement data"

序号目标位移/mm实际位移/mm误差/%
1115115.279 050.24
26464.104 5630.16
39393.137 4070.15
44848.153 8870.32
56363.117 7850.19
64544.800 590.44
74040.153 1480.38
84444.226 4360.51
94949.081 90.17
103938.928 1280.18
????
502322.987 670.05
51119119.206 210.17
526565.012 7160.02
53108108.241 130.22
545959.069 8130.12
55111111.284 530.26
567979.022 3540.03
57126126.213 330.17
58101101.017 090.02
59106106.198 050.19
604747.069 8060.15
1 宋大同, 陈塑寰, 邱志平. 结构频率误差修正参数的最优选取问题[J]. 力学学报,1995,27(1):110-116.
Song Da-tong, Chen Su-huan, Qiu Zhi-ping. Optimal correction of frequency errors and selection method of parameters to be modified[J]. Acta Mechanica Sinica, 1995, 27(1):110-116.
2 麻凯, 管欣, 李鹏. 悬架运动学特性优化中的参数选取方法[J]. 汽车工程,2013,35(6):516-520.
Ma Kai, Guan Xin, Li Peng. Parameter selection method in optimization of suspension kinematics characteristics[J]. Automotive Engineering, 2013, 35(6):516-520.
3 Conte J P, Vijalapura P K, Meghella M. Consistent finite-element response sensitivity analysis[J]. Journal of Engineering Mechanics, 2003, 129(12): 1380-1393.
4 李莎, 肖南, 董石麟. 变长度单元自适应索杆张力结构响应灵敏度分析[J]. 华中科技大学学报:自然科学版,2014,42(10):119-123.
Li Sha, Xiao Nan, Dong Shi-lin. Sensitivity analysis on responses of adaptive cable-strut tensile structure with length changeable elements[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2014, 42(10):119-123.
5 刘广, 刘济科, 吕中荣. 基于时域响应灵敏度分析的非线性系统参数识别[J]. 振动与冲击,2018,37(21):213-219.
Liu Guang, Liu Ji-ke, Zhong-rong Lyu. Parametric recognition of a nonlinear system based on time domain response sensitivity analysis[J]. Journal of Vibration and Shock, 2018, 37(21):213-219.
6 黄毅, 刘辉, 项昌乐. 基于一、二阶嵌入灵敏度分析的车辆传动系统振动响应预测[J]. 振动与冲击,2015,34(6):72-78.
Huang Yi, Liu Hui, Xiang Chang-le. Vibration response prediction for a vehicle transmission system using first-order and second-order iterative embedded sensitivity analysis[J]. Journal of Vibration and Shock, 2015, 34(6):72-78.
7 邱志平, 王晓军. 结构灵敏度分析的区间方法[J]. 兵工学报,2005,26(6):80-84.
Qiu Zhi-ping, Wang Xiao-jun. An interval method for sensitivity analysis of the structures[J]. Acta Armamentarii, 2005, 26(6):80-84.
8 Kiran R, Li L, Khandelwal K. Complex perturbation method for sensitivity analysis of nonlinear trusses [J]. Journal of Structural Engineering, 2017, 143(1): No.04016154.
9 Wang D. Sensitivity analysis of structural response to position of external applied load in plate flexural condition[J]. Computers & Structures, 2017, 190: 25-40.
10 Gu Q, Liu Y D, Li Y, et al. Finite element response sensitivity analysis of three-dimensional soil-foundation-structure interaction(SFSI) systems[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(3): 555-566.
11 Lin L, Chang H, Zhang X. Research on beam structure damage identification method based on time domain response sensitivity analysis[J]. Journal of Physics: Conference Series, 2019, 1213(5):No. 052024.
12 Luo Z, Wang X, Liu D. Prediction on the static response of structures with large-scale uncertain-but-bounded parameters based on the adjoint sensitivity analysis[J]. Structural and Multidisciplinary Optimization, 2020, 61(1): 123-139.
13 陈飙松, 张力丹, 鲁一南,等. 结构优化半解析灵敏度分析的改进算法[J]. 计算力学学报,2018,35(5):533-539.
Chen Biao-song, Zhang Li-dan, Lu Yi-nan, et al. Modified semi-analytical sensitivity analysis methods for structural design optimization[J]. Chinese Journal of Computational Mechanics, 2018, 35(5):533-539.
14 Radau L, Gerzen N, Barthold F J. Sensitivity of structural response in context of linear and non-linear buckling analysis with solid shell finite elements[J]. Structural and Multidisciplinary Optimization, 2017, 55(6): 2259-2283.
15 Zuo W, Xu T, Zhang H, et al. Fast structural optimization with frequency constraints by genetic algorithm using adaptive eigenvalue reanalysis methods [J]. Structural and Multidisciplinary Optimization, 2011, 43(6): 799-810.
16 Zuo W, Yu Z, Zhao S, et al. A hybrid fox and kirsch's reduced basis method for structural static reanalysis[J]. Structural and Multidisciplinary Optimization, 2012, 46(2): 261-272.
17 Zuo W, Bai J, Yu J. Sensitivity reanalysis of static displacement using Taylor series expansion and combined approximate method[J]. Structural and Multidisciplinary Optimization, 2016, 53(5): 953-959.
18 麻凯, 李邦辉, 杨坤, 等. 结构静态位移一阶和二阶灵敏度近似计算方法[J]. 吉林大学学报:工学版,2021,51(2):472-477.
Ma Kai, Li Bang-hui, Yang Kun, et al. First and second⁃order sensitivity method of structure static displacement[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2):472-477.
[1] Jian-xiao ZHENG,Wen-bo WANG,Jin-song LIU,Li-ming ZHOU,Yu LI. Moisture-electro-mechanical coupling smoothed finite element method based on asymptotic homogenization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1876-1886.
[2] Tian-hao WANG,Bo LI,Quan-yi YU,Lin-lin XU,Guo-qiang JIA,Shan-shan GUAN. Uncertainty quantification of electric vehicle's wireless power transfer efficiency based on sparse polynomial chaos expansion method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3433-3442.
[3] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[4] Zhong-hua SHI,Quan-wei SONG,Zhen-hang KANG,Qiang XIE,Ji-feng ZHANG. Numerical simulation and experiment on ultrasonic deicing system of airfoil structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1561-1573.
[5] Kai MA,Bang-hui LI,Kun YANG,Qiao-ling LIU. First and second⁃order sensitivity method of structure static displacement [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 472-477.
[6] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[7] Xiao⁃qin ZHOU,Lu YANG,Lei ZHANG,Li⁃jun CHEN. Finite element analysis of hinging octahedron structure withnegative compressibility [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 865-871.
[8] CHEN Dong-hui, LYU Jian-hua, LONG Gang, ZHANG Yu-chen, CHANG Zhi-yong. Static rollover stability of semi-mounted agricultural machinery based on ADAMS [J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[9] ZHANG Ze-xing, CHEN Guo-ying, ZONG Chang-fu. Objective evaluation indices of steering performance for EPS based on sensitivity analysis [J]. 吉林大学学报(工学版), 2015, 45(4): 1043-1048.
[10] KE Jun, CHENG Zhi-yong, SHI Wen-ku, SHI Teng, ZHANG Yi-jing, GUO Fu-xiang. Modal analysis and structure optimization of bus floor based on floor vibration control [J]. 吉林大学学报(工学版), 2015, 45(3): 719-725.
[11] MENG Guang-wei,LI Xiao-lin,LI Feng,ZHOU Li-ming,WANG Hui. Smoothed multiscale finite element method for flow in fractured media [J]. 吉林大学学报(工学版), 2015, 45(2): 481-486.
[12] CHEN Shu-ming, PENG Deng-zhi, WANG Deng-feng, LIANG Jie. Structural-acoustic coupling and optimal experimental design for automotive interior low frequency noise [J]. 吉林大学学报(工学版), 2014, 44(6): 1550-1556.
[13] ZHAO Shi-jia, XU Tao, CHEN Wei, TAN Li-hui. Efficient approach for modal sensitivity analysis for near defective systems [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 497-499.
[14] XU Tao, QIU Bing, CHENG Fei, JIN Yan-zhong, JIANG Yong-zhou, ZHAO Shi-jia. Structural reanalysis algorithm study of topological modifications based on even lines Epsilon accelerated method [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 246-249.
[15] ZHANG Ying-shuang, WANG Guo-qiang, WANG Ji-xin, HOU Xiao-ting, et al. Load spectrum compiling and fatigue life prediction of wheel loader axle shaft [J]. 吉林大学学报(工学版), 2011, 41(6): 1646-1651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!