Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3715-3726.doi: 10.13229/j.cnki.jdxbgxb.20240248

Previous Articles    

Chinese text watermarking algorithm based on chaotic AES and synonym expansion

Shu-ming LI1(),Bing-nan LI1,Chao YANG2,3   

  1. 1.College of Computer and Information Engineering,Hubei Normal University,Huangshi 435002,China
    2.College of Computer,Hubei University,Wuhan 430062,China
    3.Hubei Key Laboratory of Big Data Intelligent Analysis and Industry Applications,Hubei University,Wuhan 430062,China
  • Received:2024-03-11 Online:2025-11-01 Published:2026-02-03

Abstract:

At present, the text watermarking algorithms based on modification and generation generally have the problems of large semantic ambiguity, limited embedding capacity and insufficient security. In view of the above problems, this paper proposes an improved algorithm based on chaotic AES and synonym expansion. By designing a context matching mechanism based on Sentence-Bert, the algorithm can not only ensure that the context after synonym replacement is highly similar to the semantics of the original text, but also distinguish the semantic ambiguity caused by synonym tampering. The variant characters are extended as synonyms, and more synonyms are replaced without causing semantic ambiguity, thereby improving the embedding capacity. By using chaotic mapping mechanism, the traditional MD5 algorithm is upgraded, and the chaotic AES algorithm is constructed to realize the encryption protection of hidden information, thereby increasing the difficulty of cracking. The research results show that compared with similar algorithms, the algorithm has good performance in semantic ambiguity, embedding capacity and security.

Key words: text watermarking algorithm, chaotic MD5, chaotic AES, chaotic mapping mechanism, context matching mechanism, synonym expansion

CLC Number: 

  • TP391

Fig.1

Embedding process"

Fig.2

Extraction process"

Fig.3

Chaotic mapping mechanism"

Fig.4

Context matching mechanism"

Fig.5

Comparison of text semantic ambiguity effects before and after watermark embedding"

Fig.6

Comparison of text semantic ambiguity effects before and after synonym replacement"

Fig.7

Semantic similarity of text before and after synonym replacement"

Table 1

Extraction results of synonym expansion decoding"

同义词

提取结果

异体字

提取结果

认为-以为:1,可以-能够:1,进行-开展:1外-外:0,并—并:0
总结-总结:0,几个-多个:1,根据-基于:1晚-晚:0,业—?:1
完成-完成:0,有关-相关:1,比如-例如:1内-內:1,任—仼:1
几天-几天:0,可以-能够:1,认为-认为:0值-値:1,并—幷:1
不在-不在:0,由此-由此:0,判断-判断:0出-出:0,晚—晩:1
产生-生成:1,阈值-阙值:1,根据-根据:0出-出:0,并—并:0
规则-规则:0,准确-正确:1,住校-住校:0出-出:0,别—別:1
识别-识别:0,结合-结合:0,杜绝-杜绝:0内-内:0,出—出:0
随意-随便:1,通过-借助:1,形成-建立:1外-:1,出—岀:1
当天-当日:1,通过-通过:0,及时-实时:1晚-晩:1,并—并:0
相应-对应:1,及时-及时:0,了解-洞悉:1

Fig.8

Comparison of semantic ambiguity effects between synonym tampering text and original word alignment text"

Fig.9

Semantic similarity between synonym tampering text and original word alignment text"

Table 2

Comparison of output results of chaotic mapping mechanism under different r values"

输入输出

第1组: ①r=1

X={0,1,2,3,…,65 534,65 535}

Y={346,1 056,1 766,2 476,…,60 348,61 058}

第2组: ①r=2

X={0,1,2,3,…,65 534,65 535}

Y={173,528,883,1 238,…,

30 174,30 529}

…………

第100组: ①r=100

X={0,1,2,3,…,65 534,65 535}

Y={60 362,29 086,8 259,

39 535,…,46 474,15 198}

第101组: ①r=101

X={0,1,2,3,…,65 534,65 535}

Y={46 351,3 015,14 348,

57 684,…,39 822,7 819}

…………

第500组: ①r=500

X={0,1,2,3,…,65 534,65 535}

Y={22 493,60 010,45 424,

7 907,…,53 067,30 136}

第501组: ①r=501

X={0,1,2,3,…,65 534,65 535}

Y={27 026,56 562,14 333,

39 719,…,50 048,7 713}

…………

第999组: ①r=999

X={0,1,2,3,…,65 534,65 535}

Y={18 978,39 634,60 290,

50 793,…,37 826,17 170}

第1 000组: ①r=1 000

X={0,1,2,3,…,65 534,65 535}

Y={60 229,30 005,22 712,

52 936,…,45 292,15 068}

Table 3

Comparison of anti-cracking ability between chaotic MD5 and traditional MD5"

攻击主体攻击对象攻击次数破解次数
CMD5网站传统MD5加密密钥1 000613
混沌MD5增强密钥1 0000

MD5Crack

工具

传统MD5加密密钥1 000968
混沌MD5增强密钥1 0000

Table 4

Comparison of anti-cracking ability between chaotic AES and traditional AES"

攻击主体攻击对象

攻击

次数

破解

次数

BurpCrypto工具传统AES加密结果1 000991
混沌AES加密结果1 0000

Table 5

Comprehensive comparison of algorithm capabilities"

算法性能

文献[3

文献[6

本文

抗语义歧义

较高

嵌入容量

较低

同义词篡改判别

不支持

较高

混沌算法抗破解

不支持

较高

加密算法抗破解

不支持

较高

时间复杂度

略高于中等

[1] 朱强强. 基于汉字笔画微变形的文本隐写方法研究[D]. 杭州: 杭州电子科技大学网络与信息安全学院,2024.
Zhu Qiang-qiang. Research on text steganography based on chinese character stroke fine-tuning[D]. Hangzhou: College of Network and Information Security, Hangzhou Dianzi University, 2024.
[2] 黄瑶, 潘丽丽, 熊思宇, 等. 基于生成对抗网络与多头注意力的文本隐写术[J]. 计算机工程与科学,2023, 45(10): 1789-1796.
Huang Yao, Pan Li-li, Xiong Si-yu, et al. Text steganography based on generative adversarial networks and multi-head attention[J]. Journal of Computer Engineering & Science, 2023, 45(10): 1789-1796.
[3] 费文斌, 唐向宏, 王静, 等. 基于预测误差扩展的可逆文本水印算法[J]. 中文信息学报, 2015, 29(1):133-138.
Fei Wen-bin, Tang Xiang-hong, Wang Jing, et al. Reversible text watermarking algorithm based on prediction error expansion[J]. Journal of Chinese Information Processing, 2015, 29(1): 133-138.
[4] Xiang L Y, Wu W S, Li X, et al. A linguistic steganography based on word indexing compression and candidate selection[J]. Multimedia Tools and Applications, 2018, 77(21): 28969-28989.
[5] 姚晔, 刘书辉, 王慧, 等. 基于字符扰动变形和字库替换的鲁棒中文文本水印[J]. 密码学报, 2023, 10(4): 769-785.
Lao Ye, Liu Shu-hui, Wang Hui, et al. Robust chinese text watermarking method based on chinese character glyph perturbation and font replacing[J]. Journal of Cryptologic Research, 2023, 10(4): 769-785.
[6] 张娜, 张琨, 张先国, 等. 基于主题词与信息熵编码的文本零水印算法[J]. 计算机与数字工程, 2021, 49(8): 1612-1618.
Zhang Na, Zhang Kun, Zhang Xian-guo, et al. Text zero-watermarking algorithm based on keywords and information entropy encoding[J]. Journal of Computer & Digital Engineering, 2021, 49(8): 1612-1618.
[7] Zheng X Y, Wu H Z. Autoregressive linguistic steganography based on BERT and consistency coding[J]. Security and Communication Networks, 2022: 1-11.
[8] Yu L, Lu Y L, Yan X H, et al. MTS-Stega: linguistic steganography based on multi-time-step[J]. Entropy, 2022, 24(5): 585.
[9] 金家立. 基于自动选择编码方式的文本信息隐藏技术研究[D]. 沈阳: 沈阳工业大学信息科学与工程学院,2023.
Jin Jia-li. Research on text information hiding technology based on automatic selection encoding[D]. Shenyang: School of Information Science and Engineering, Shenyang University of Technology,2023.
[10] Reimers N, Gurevych I. Sentence-bert: sentence embeddings using siamese bert-networks[J]. Arxiv Preprint, 2019, 8: 190810084.
[11] Wang X Y, Feng D G, Lai X J, et al. Collisions for hash functions MD 4, MD5, HAVAL-128 and RIPEMD[J/OL]. IACR Cryptology eprint Archive, [2004-08-17].
[12] Klima V. Tunnels in hash functions: MD5 collisions within a minute[J/OL].IACR Cryptol. ePrint Arch, [2006-04-17].
[13] Stevens M. Attacks on hash functions and applications[D]. Leiden: Mathematical institute faculty, science Leiden University, 2012.
[14] Rønjom S, Bardeh N G, Helleseth T. Yoyo tricks with AES[C]∥Advances in Cryptology-ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 2017: 217-243.
[15] Bardeh N G, Rønjom S. The exchange attack: how to distinguish six rounds of AES with chosen plaintexts[C]∥International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, 2019: 347-370.
[16] Dunkelman O, Keller N, Ronen E, et al. The retracing boomerang attack[C]∥Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2020: 280-309.
[17] Bardeh N G, Rijmen V. New key recovery attack on reduced-round AES[J]. Cryptology ePrint Archive, 2022(2): 43-62.
[1] Xiu-hui WANG,Yong-bo XU. Chinese named entity recognition algorithm with soft attention mask embedding [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 231-238.
[2] Fei SHAN,Hui LI,Hao SUN,Shi-gang NIE,Zhong-hu SHEN. Pavement distress identification method based on improved simAM-YOLOv8 [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 219-230.
[3] Hai-peng CHEN,Hong-xin LIU,Hui KANG,Xue-jie LIU. Image manipulation localization method based on boundary uncertainty learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 4063-4071.
[4] Hong ZHAO,Yu-xuan MA,Fu-rong SONG. Image adversarial examples generation based on Diff⁃AdvGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 4052-4062.
[5] Ping FENG,Zi-qian YANG,Ren-jie WANG,Shi-yu FENG,Hang WU,Yu SUN. Entity relationship extraction method based on span and semantic features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 4045-4051.
[6] Yan YANG,Wang-liang SHEN. Multi⁃scale detail enhancement and layered noise suppression algorithm for image dehazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 4010-4023.
[7] Tian-min DENG,Peng-fei XIE,Yang YU,Yue-tian CHEN. Method of lane detection based on adaptive fusion of double branch features [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(12): 3840-3851.
[8] Xiao-Dong CAI,Ye-yang HUANG,Li-fang DONG. Semantic similarity model based on augmented positives and interlayer negatives [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(11): 3705-3714.
[9] Yu-dong CAO,Xin-lin LIAO,Xin CHEN,Xu JIA. Vision object detection model with deep active learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(11): 3697-3704.
[10] Rui-feng ZHANG,Fang-zhao GUO,Qiang LI. Chest X-ray images classification based on multi-scale attention information multiplexing network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(11): 3686-3696.
[11] Hong-bin WANG,Hao-dong TANG,Yan-tuan XIAN,Bo LIU,Xin-liang GU. Knowledge graph alignment based on entity reliable path and semantic aggregates [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(11): 3673-3685.
[12] Lai-wei JIANG,Ce WANG,Hong-yu YANG. Review of multi-object tracking based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(11): 3429-3445.
[13] Lin LIN,Yu-xin CHEN,Wei-zhi NAI. Adaptive real⁃time gesture classification algorithm based on gesture frame sequence extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 3042-3048.
[14] Yan PIAO,Ji-yuan KANG. RAUGAN:infrared image colorization method based on cycle generative adversarial networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2722-2731.
[15] Pei-ming SUN,Zhe WANG. Optimization method of party affairs activity scheduling based on directional differential evolution algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2761-2770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!