Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (12): 3955-3963.doi: 10.13229/j.cnki.jdxbgxb.20240325

Previous Articles    

Simulation analysis on SCB test of asphalt concrete using cohesive zone model

Zheng-feng ZHOU1,2(),Hu-cheng TANG1,2,Xin-wang OU1,2   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.Highway Engineering Key Laboratory of Sichuan Province,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2024-03-28 Online:2025-12-01 Published:2026-02-03

Abstract:

To explore the cracking characteristics of asphalt concrete, a finite element software ABAQUS was employed to simulate the semi-circular bend (SCB) test of asphalt concrete using a bilinear cohesive zone model (CZM). The simulated load-load line displacement curve was compared with the experimental result to validate the applicability of the CZM in cracking analysis. Based on this, the internal stress distribution, system energy balance, fracture behavior parameters during the cracking process of the SCB specimen, and the effects of cohesive zone model parameters on the load-load line displacement of the specimen were analyzed. The results indicate that the bilinear CZM has good applicability in cracking analysis of asphalt concrete. During the loading process, the SCB specimen undergoes elastic, damage, and fracture stages. The point of instability of crack propagation does not correspond to the peak load, leading to an overestimation of fracture toughness when calculated using the peak load; a portion of the fracture work converts into elastic strain energy in the uncracked region of the specimen, resulting in an overestimation of fracture energy when calculated using fracture work. The peak load that the SCB specimen can withstand during the cracking process mainly depends on the tensile strength of asphalt concrete rather than fracture energy.

Key words: road engineering, asphalt concrete, semi-circular bend test, cohesive zone model, fracture, numerical simulation

CLC Number: 

  • U416.217

Fig.1

SCB test specimen configuration (millimeters)"

Fig.2

Stress-separation response constitute of CZM"

Fig.3

Comparison of load-load line displacement curves"

Fig.4

Stress distribution of cross section at mid-span of SCB specimen under different loading stages"

Fig.5

Status of cohesive elements at mid-span of SCB specimen under different loading stages"

Fig.6

Load-load line displacement curve and status of cohesive elements of SCB specimen"

Fig.7

Energy balance during SCB test"

Fig.8

Load-load line displacement curves varied with fracture energy of cohesive elements"

Fig.9

Load-load line displacement curves varied with damage initiation stresses of cohesive elements"

[1] Wagoner M P, Buttlar W G, Paulino G H, et al. Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test[J]. Transportation Research Record, 2005,1929: 183-192.
[2] Wagoner M P, Buttlar W G, Paulino G H. Disk-shaped compact tension test for asphalt concrete fracture[J]. Experimental Mechanics, 2005, 45(3): 270-277.
[3] Radeef H R, Hassan N A, Abidin A R Z, et al. Determining fracture energy in asphalt mixture: a review[C]∥IOP Conference Series: Earth and Environmental Science, Putrajaya, Malaysia,2021: 1-11.
[4] Meng Y, Kong W, Gou C, et al. A review on evaluation of crack resistance of asphalt mixture by semi-circular bending test[J]. Journal of Road Engineering, 2023, 3(1): 87-97.
[5] 李萍, 吴中, 马科, 等. 基于SCB试验的沥青混合料低温抗裂性研究[J]. 武汉理工大学学报:交通科学与工程版, 2015,39(2): 238-241.
Li Ping, Wu Zhong, Ma Ke, et al. Cracking resistant of asphalt mixture at the low temperature based on the SCB test[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015,39(2): 238-241.
[6] 罗培峰. 基于半圆弯曲试验的沥青混合料断裂试验方法和评价指标研究[D]. 西安: 长安大学公路学院, 2017.
Luo Pei-feng. Research on the asphalt mixture crack test methods and evaluation indexes based on SCB[D]. Xi′an: School of Highway, Chang′an University, 2017.
[7] 陈巧巧, 凌天清, 何立. 基于SCB试验的沥青混合料抗裂性能影响因素研究[J]. 公路交通技术, 2018,34(4): 37-41.
Chen Qiao-qiao, Ling Tian-qing, He Li. Study on factors affecting crack resistance of asphalt mixture based on SCB test[J]. Technology of Highway and Transport, 2018,34(4): 37-41.
[8] 冯德成, 崔世彤, 易军艳, 等. 基于SCB试验的沥青混合料低温性能评价指标研究[J]. 中国公路学报, 2020, 33(7): 50-57.
Feng De-cheng, Cui Shi-tong, Yi Jun-yan, et al. Evaluation index of low-temperature asphalt mixture performance based on semi-circular bending test[J]. China Journal of Highway and Transport, 2020, 33(7): 50-57.
[9] 姜鑫龙, 杨树, 李庭予. 基于半圆弯曲试验的沥青混凝土低温性能指标研究[J]. 铁道科学与工程学报, 2022, 19(2): 428-434.
Jiang Xin-long, Yang Shu, Li Ting-yu. Research on low-temperature performance index of asphalt concrete based on semi-circular bending test[J]. Journal of Railway Science and Engineering, 2022, 19(2): 428-434.
[10] Vega A M M, Yang S, Braham A, et al. Evaluation of semi-circular bend geometric properties for asphalt concrete testing[J]. Journal of Materials in Civil Engineering, 2021, 33(12): No.04021342.
[11] Mobasher B, Mamlouk M S, Lin H M. Evaluation of crack propagation properties of asphalt mixtures[J]. Journal of Transportation Engineering, 1997, 123(5): 405-413.
[12] Yang S, Braham A F. Influence of binder grade, gradation, temperature and loading rate on R-curve of asphalt concrete[J]. Construction and Building Materials, 2017, 154:780-790.
[13] Huang R, Yang S, Liu T, et al. Determination of J-integral of asphalt concrete based on SC(B) test configuration and image analysis[J]. Construction and Building Materials, 2020, 248:No. 118727.
[14] . Standard test method for evaluation of asphalt mixture cracking resistance using the semi-circular bend test (SCB) at intermediate temperatures [S].
[15] AA . Determining the fracture potential of asphalt mixtures using the Illinois flexibility index test (I-FIT)[S].
[16] Ayatollahi M R, Alliha M R M, Saghafi H. An improved semi-circular bend specimen for investigating mixed mode brittle fracture[J]. Engineering Fracture Mechanics, 2011, 78(1): 110-123.
[17] Ameri M, Mansourian A, Pirmohammad S, et al. Mixed mode fracture resistance of asphalt concrete mixtures[J]. Engineering Fracture Mechanics, 2012, 93: 153-167.
[18] Aliha M R M, Behbahani H, Fazaeli H, et al. Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures[J]. Construction and Building Materials, 2014, 54: 623-635.
[19] Mehdinedjad S, Fazaeli H, Moniri A, et al. Comparison of two criteria of stress intensity factor and fracture energy to investigate the behavior of asphalt mixtures under combined tensile-shear loading modes-A statistical approach[J]. Construction and Building Materials, 2021, 290:No. 123230.
[20] Liu P, Chen J, Lu G, et al. Numerical simulation of crack propagation in flexible asphalt pavements based on cohesive zone model developed from asphalt mixtures[J]. Materials, 2019, 12:No.1278.
[21] Al-Qudsi A, Falchetto A C, Wang D, et al. Finite element cohesive fracture modeling of asphalt mixture based on the semi-circular bending (SCB) test and self-affine fractal cracks at low temperatures[J]. Cold Regions Science and Technology, 2020, 169: No.102916.
[22] 张东, 黄晓明, 赵永利. 基于内聚力模型的沥青混合料劈裂试验模拟[J]. 东南大学学报:自然科学版, 2010, 40(6): 1276-1281.
Zhang Dong, Huang Xiao-ming, Zhao Yong-li. Simulation of indirect tension test of asphalt mixtures based on cohesive zone model[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1276-1281.
[23] 赵永利, 张东. 基于内聚力模型的沥青路面低温缩裂研究[J]. 公路交通科技, 2010, 27(1): 11-16.
Zhao Yong-li, Zhang Dong. Study of low temperature cracking of asphalt pavement based on cohesive zone model[J]. Journal of Highway and Transportation Research and Development, 2010, 27(1): 11-16.
[24] 钮凯健, 李昶. 基于内聚力模型的沥青路面低温缩裂数值模拟[J]. 公路交通科技, 2012, 29(6): 11-15, 21.
Niu Kai-jian, Li Chang. Numerical simulation of low-temperature shrinkage cracking of asphalt pavement based on cohesive zone model[J]. Journal of Highway and Transportation Research and Development, 2012, 29(6): 11-15, 21.
[25] Song S H, Paulino G H, Buttlar W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006,73(18):2829-2848.
[26] Kim H, Buttlar W G. Finite element cohesive fracture modeling of airport pavements at low temperatures[J]. Cold Regions Science and Technology, 2009,57(2):123-130.
[27] Dave E V, Buttlar W G. Thermal reflective cracking of asphalt concrete overlays[J]. International Journal of Pavement Engineering, 2010,11(6):477-488.
[28] Ban H, Im S, Kim Y R, et al. Laboratory tests and finite element simulations to model thermally induced reflective cracking of composite pavements[J]. International Journal of Pavement Engineering, 2017,19(3):220-230.
[29] Rith M, Kim Y K, Lee S W. Reflective cracking from thermal loading in asphalt-concrete composite pavements[J]. Proceedings of the Institution of Civil Engineers-Transport, 2022,175(3):178-186.
[30] Mu F, Vandenbossche J. A superimposed cohesive zone model for investigating the fracture properties of concrete-asphalt interface debonding[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 496-511.
[31] Kim Y R, Aragão F T S. Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures[J]. Finite Elements in Analysis and Design, 2013, 63: 23-32.
[32] 周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18(3): 5-14.
Zhou Zheng-feng, Pu Zhuo-heng, Liu Chao. Application of cohesive zone model to simulation reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 5-14.
[33] Falchetto A C, Moon K H, Lee C B, et al. Correlation of low temperature fracture and strength properties between SCB and IDT tests using a simple 2D FEM approach[J]. Road Materials and Pavement Design, 2017, 18(Sup2): 329-338.
[1] Bo LI,Yuan LIANG,Yun-dong MA,Lu YU. Intelligent monitoring and early warning for freeze⁃thaw instability of high⁃speed railway tunnel portal slopes in cold regions [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 2985-2997.
[2] Ling XU,Xiao-bing WANG,Jie YUAN,Hua-ping REN,Yi-feng HAN,Xi-yong XU. Controlled low strength materials based on silty sand and its properties in narrow backfill zone [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2657-2668.
[3] De-hua WU,Rong-feng CHEN. Characteristics of passenger-cargo mixed traffic flow in intelligent network and agglomeration lane-change strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2588-2596.
[4] Yao-gang TIAN,Jing JIANG,Cheng ZHAO,Xiao-min YANG,Jun ZHANG,Kan JIA. Temperature resistance mechanism of high-early-strength cement mortar modified with waterborne epoxy resin [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2203-2211.
[5] Zhi-you LONG,Zhao-long WAN,Shi DONG,Chao YANG,Xiao-yang LIU. Displacement prediction of highway slope based on variational mode decomposition and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2320-2332.
[6] Kang YAO,Qiao DONG,Xue-qin CHEN,Bin SHI,Shi-ao YAN,Xiang WANG. Mixed⁃mode mesoscale fracture behavior of concrete based on a phase field regularized cohesive zone model [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2286-2297.
[7] Wan-feng WEI,Hong-gang ZHANG,Yang-peng ZHANG,Fan YANG,Bo-ming TANG,Ling-yun KONG. Research progress on modification mechanism, preparation and performance of waste rubber powder modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1834-1853.
[8] Zhen YANG,Rui-ping ZHENG,Zhe GONG. Highway infrastructure performance and traffic state prediction on road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1973-1983.
[9] Yong ZHAO,Wen-ming JIN,Qi-feng ZHENG,Shu-qing KOU. Influence of cracking groove depth on cracking performance of bearing seat of reducer housing [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1552-1558.
[10] An-shun ZHANG,Wei FU,Jun-hui ZHANG,Feng GAO. Shear properties and stress-strain relationships characterization of Changsha compacted clay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1604-1616.
[11] Li-ming WANG,Zi-kun SONG,Hui ZHOU,Wen WEI,Hao YUAN. Rheological response and response mechanism of petroleum asphalt treated with ultrasound [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1346-1355.
[12] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[13] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[14] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[15] Xin CHEN,Xiang-yuan ZHANG,Zi-tao WU,Gui-shen YU,Li-fei YANG. Effect of process sequence on tensile shear properties of PFSSW joints for automotive aluminum sheets [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 468-475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!