Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (12): 3955-3963.doi: 10.13229/j.cnki.jdxbgxb.20240325
Zheng-feng ZHOU1,2(
),Hu-cheng TANG1,2,Xin-wang OU1,2
CLC Number:
| [1] | Wagoner M P, Buttlar W G, Paulino G H, et al. Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test[J]. Transportation Research Record, 2005,1929: 183-192. |
| [2] | Wagoner M P, Buttlar W G, Paulino G H. Disk-shaped compact tension test for asphalt concrete fracture[J]. Experimental Mechanics, 2005, 45(3): 270-277. |
| [3] | Radeef H R, Hassan N A, Abidin A R Z, et al. Determining fracture energy in asphalt mixture: a review[C]∥IOP Conference Series: Earth and Environmental Science, Putrajaya, Malaysia,2021: 1-11. |
| [4] | Meng Y, Kong W, Gou C, et al. A review on evaluation of crack resistance of asphalt mixture by semi-circular bending test[J]. Journal of Road Engineering, 2023, 3(1): 87-97. |
| [5] | 李萍, 吴中, 马科, 等. 基于SCB试验的沥青混合料低温抗裂性研究[J]. 武汉理工大学学报:交通科学与工程版, 2015,39(2): 238-241. |
| Li Ping, Wu Zhong, Ma Ke, et al. Cracking resistant of asphalt mixture at the low temperature based on the SCB test[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015,39(2): 238-241. | |
| [6] | 罗培峰. 基于半圆弯曲试验的沥青混合料断裂试验方法和评价指标研究[D]. 西安: 长安大学公路学院, 2017. |
| Luo Pei-feng. Research on the asphalt mixture crack test methods and evaluation indexes based on SCB[D]. Xi′an: School of Highway, Chang′an University, 2017. | |
| [7] | 陈巧巧, 凌天清, 何立. 基于SCB试验的沥青混合料抗裂性能影响因素研究[J]. 公路交通技术, 2018,34(4): 37-41. |
| Chen Qiao-qiao, Ling Tian-qing, He Li. Study on factors affecting crack resistance of asphalt mixture based on SCB test[J]. Technology of Highway and Transport, 2018,34(4): 37-41. | |
| [8] | 冯德成, 崔世彤, 易军艳, 等. 基于SCB试验的沥青混合料低温性能评价指标研究[J]. 中国公路学报, 2020, 33(7): 50-57. |
| Feng De-cheng, Cui Shi-tong, Yi Jun-yan, et al. Evaluation index of low-temperature asphalt mixture performance based on semi-circular bending test[J]. China Journal of Highway and Transport, 2020, 33(7): 50-57. | |
| [9] | 姜鑫龙, 杨树, 李庭予. 基于半圆弯曲试验的沥青混凝土低温性能指标研究[J]. 铁道科学与工程学报, 2022, 19(2): 428-434. |
| Jiang Xin-long, Yang Shu, Li Ting-yu. Research on low-temperature performance index of asphalt concrete based on semi-circular bending test[J]. Journal of Railway Science and Engineering, 2022, 19(2): 428-434. | |
| [10] | Vega A M M, Yang S, Braham A, et al. Evaluation of semi-circular bend geometric properties for asphalt concrete testing[J]. Journal of Materials in Civil Engineering, 2021, 33(12): No.04021342. |
| [11] | Mobasher B, Mamlouk M S, Lin H M. Evaluation of crack propagation properties of asphalt mixtures[J]. Journal of Transportation Engineering, 1997, 123(5): 405-413. |
| [12] | Yang S, Braham A F. Influence of binder grade, gradation, temperature and loading rate on R-curve of asphalt concrete[J]. Construction and Building Materials, 2017, 154:780-790. |
| [13] | Huang R, Yang S, Liu T, et al. Determination of J-integral of asphalt concrete based on SC(B) test configuration and image analysis[J]. Construction and Building Materials, 2020, 248:No. 118727. |
| [14] | . Standard test method for evaluation of asphalt mixture cracking resistance using the semi-circular bend test (SCB) at intermediate temperatures [S]. |
| [15] | AA . Determining the fracture potential of asphalt mixtures using the Illinois flexibility index test (I-FIT)[S]. |
| [16] | Ayatollahi M R, Alliha M R M, Saghafi H. An improved semi-circular bend specimen for investigating mixed mode brittle fracture[J]. Engineering Fracture Mechanics, 2011, 78(1): 110-123. |
| [17] | Ameri M, Mansourian A, Pirmohammad S, et al. Mixed mode fracture resistance of asphalt concrete mixtures[J]. Engineering Fracture Mechanics, 2012, 93: 153-167. |
| [18] | Aliha M R M, Behbahani H, Fazaeli H, et al. Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures[J]. Construction and Building Materials, 2014, 54: 623-635. |
| [19] | Mehdinedjad S, Fazaeli H, Moniri A, et al. Comparison of two criteria of stress intensity factor and fracture energy to investigate the behavior of asphalt mixtures under combined tensile-shear loading modes-A statistical approach[J]. Construction and Building Materials, 2021, 290:No. 123230. |
| [20] | Liu P, Chen J, Lu G, et al. Numerical simulation of crack propagation in flexible asphalt pavements based on cohesive zone model developed from asphalt mixtures[J]. Materials, 2019, 12:No.1278. |
| [21] | Al-Qudsi A, Falchetto A C, Wang D, et al. Finite element cohesive fracture modeling of asphalt mixture based on the semi-circular bending (SCB) test and self-affine fractal cracks at low temperatures[J]. Cold Regions Science and Technology, 2020, 169: No.102916. |
| [22] | 张东, 黄晓明, 赵永利. 基于内聚力模型的沥青混合料劈裂试验模拟[J]. 东南大学学报:自然科学版, 2010, 40(6): 1276-1281. |
| Zhang Dong, Huang Xiao-ming, Zhao Yong-li. Simulation of indirect tension test of asphalt mixtures based on cohesive zone model[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1276-1281. | |
| [23] | 赵永利, 张东. 基于内聚力模型的沥青路面低温缩裂研究[J]. 公路交通科技, 2010, 27(1): 11-16. |
| Zhao Yong-li, Zhang Dong. Study of low temperature cracking of asphalt pavement based on cohesive zone model[J]. Journal of Highway and Transportation Research and Development, 2010, 27(1): 11-16. | |
| [24] | 钮凯健, 李昶. 基于内聚力模型的沥青路面低温缩裂数值模拟[J]. 公路交通科技, 2012, 29(6): 11-15, 21. |
| Niu Kai-jian, Li Chang. Numerical simulation of low-temperature shrinkage cracking of asphalt pavement based on cohesive zone model[J]. Journal of Highway and Transportation Research and Development, 2012, 29(6): 11-15, 21. | |
| [25] | Song S H, Paulino G H, Buttlar W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006,73(18):2829-2848. |
| [26] | Kim H, Buttlar W G. Finite element cohesive fracture modeling of airport pavements at low temperatures[J]. Cold Regions Science and Technology, 2009,57(2):123-130. |
| [27] | Dave E V, Buttlar W G. Thermal reflective cracking of asphalt concrete overlays[J]. International Journal of Pavement Engineering, 2010,11(6):477-488. |
| [28] | Ban H, Im S, Kim Y R, et al. Laboratory tests and finite element simulations to model thermally induced reflective cracking of composite pavements[J]. International Journal of Pavement Engineering, 2017,19(3):220-230. |
| [29] | Rith M, Kim Y K, Lee S W. Reflective cracking from thermal loading in asphalt-concrete composite pavements[J]. Proceedings of the Institution of Civil Engineers-Transport, 2022,175(3):178-186. |
| [30] | Mu F, Vandenbossche J. A superimposed cohesive zone model for investigating the fracture properties of concrete-asphalt interface debonding[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 496-511. |
| [31] | Kim Y R, Aragão F T S. Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures[J]. Finite Elements in Analysis and Design, 2013, 63: 23-32. |
| [32] | 周正峰, 蒲卓桁, 刘超. 黏聚区模型在沥青路面反射裂缝模拟中的应用[J]. 交通运输工程学报, 2018, 18(3): 5-14. |
| Zhou Zheng-feng, Pu Zhuo-heng, Liu Chao. Application of cohesive zone model to simulation reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 5-14. | |
| [33] | Falchetto A C, Moon K H, Lee C B, et al. Correlation of low temperature fracture and strength properties between SCB and IDT tests using a simple 2D FEM approach[J]. Road Materials and Pavement Design, 2017, 18(Sup2): 329-338. |
| [1] | Bo LI,Yuan LIANG,Yun-dong MA,Lu YU. Intelligent monitoring and early warning for freeze⁃thaw instability of high⁃speed railway tunnel portal slopes in cold regions [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 2985-2997. |
| [2] | Ling XU,Xiao-bing WANG,Jie YUAN,Hua-ping REN,Yi-feng HAN,Xi-yong XU. Controlled low strength materials based on silty sand and its properties in narrow backfill zone [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2657-2668. |
| [3] | De-hua WU,Rong-feng CHEN. Characteristics of passenger-cargo mixed traffic flow in intelligent network and agglomeration lane-change strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2588-2596. |
| [4] | Yao-gang TIAN,Jing JIANG,Cheng ZHAO,Xiao-min YANG,Jun ZHANG,Kan JIA. Temperature resistance mechanism of high-early-strength cement mortar modified with waterborne epoxy resin [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2203-2211. |
| [5] | Zhi-you LONG,Zhao-long WAN,Shi DONG,Chao YANG,Xiao-yang LIU. Displacement prediction of highway slope based on variational mode decomposition and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2320-2332. |
| [6] | Kang YAO,Qiao DONG,Xue-qin CHEN,Bin SHI,Shi-ao YAN,Xiang WANG. Mixed⁃mode mesoscale fracture behavior of concrete based on a phase field regularized cohesive zone model [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2286-2297. |
| [7] | Wan-feng WEI,Hong-gang ZHANG,Yang-peng ZHANG,Fan YANG,Bo-ming TANG,Ling-yun KONG. Research progress on modification mechanism, preparation and performance of waste rubber powder modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1834-1853. |
| [8] | Zhen YANG,Rui-ping ZHENG,Zhe GONG. Highway infrastructure performance and traffic state prediction on road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1973-1983. |
| [9] | Yong ZHAO,Wen-ming JIN,Qi-feng ZHENG,Shu-qing KOU. Influence of cracking groove depth on cracking performance of bearing seat of reducer housing [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1552-1558. |
| [10] | An-shun ZHANG,Wei FU,Jun-hui ZHANG,Feng GAO. Shear properties and stress-strain relationships characterization of Changsha compacted clay [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1604-1616. |
| [11] | Li-ming WANG,Zi-kun SONG,Hui ZHOU,Wen WEI,Hao YUAN. Rheological response and response mechanism of petroleum asphalt treated with ultrasound [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1346-1355. |
| [12] | Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887. |
| [13] | Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898. |
| [14] | Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663. |
| [15] | Xin CHEN,Xiang-yuan ZHANG,Zi-tao WU,Gui-shen YU,Li-fei YANG. Effect of process sequence on tensile shear properties of PFSSW joints for automotive aluminum sheets [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 468-475. |
|
||