Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1232-1240.doi: 10.13229/j.cnki.jdxbgxb.20230673

Previous Articles     Next Articles

Carbon emissions calculation for urban buses throughout lifecycles

Wen-hui ZHANG(),Bo FU,Ge ZHOU,Xiao-tian QIAO   

  1. School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2023-06-29 Online:2025-04-01 Published:2025-06-19

Abstract:

To measure the carbon emissions at each stage of buses throughout life cycle, this paper divided the life cycle of buses into process cycle and energy cycle. Considering the production, assembly, transportation, and recycling stages of each bus system, carried out research to obtain bus production data, combined the data provided by the company and GREET internal data, used Gabi to measure CO2 emissions of process cycle. Constructed a CO2 emissions measurement model that included the stages of energy extraction, production processing, transportation, and usage to estimate the energy cycle CO2 emissions of electric buses and diesel buses. The result shows that the CO2 emissions of electric buses are 39.2% higher than those of diesel buses during the process cycle. In the energy cycle, the CO2 emissions of electric buses are 14.2% lower than those of diesel buses. In a comprehensive life-cycle comparison, the CO2 emissions of electric buses are 9.73% lower than those of diesel buses.

Key words: transportation engineering, urban buses, life cycle, carbon emissions calculation

CLC Number: 

  • U491

Fig.1

System boundary"

Table 1

Buses parameters"

参数柴油公共汽车纯电动公共汽车
尺寸/mm12 000×2 550×3 15012 000×2 550×3 290
整备质量/kg11 60013 000
动力源柴油锂离子动力电池
动力电池质量/kg1 324.5
电池容量/(kW·h)210.56
附加电源铅蓄电池铅蓄电池
附加电源质量/kg2828

Table 2

Quality of systems"

系统质量/kg
柴油公共汽车纯电动公共汽车
车身6 0265 677.3
动力总成系统1 775521.6
传动系统/齿轮箱731638.7
底盘(不含电池)2 946.42 774.4
牵引电机1 040.5
电子控制器654

Table 3

Main material composition of diesel bus"

系统原材料质量/kg系统原材料质量/kg
车身4007

传动

系统

219.2
普通塑料1 331.6普通塑料36.5
玻璃270锻造铝219.2
116.6铸铁219.2
锻造铝190.2底盘

橡胶

36.5

橡胶110.6
动力总成系统752.51968.2
锻造铝85.2铸铝548
铸铝395.8锻造铝44.2
120.738.3
橡胶39普通塑料67.8
普通塑料337.2橡胶271.1
玻璃纤维增强塑料44.4

8.8

Table 4

Main material composition of electric bus"

系统原材料质量/kg系统原材料质量/kg
车身3776.6

传动

系统

388
普通塑料1254121.2
玻璃257锻造铝128.2
109.8普通塑料1.3
锻造铝177.6底盘1856.3
橡胶102.3铸铝516.9
动力总成系统260.8锻造铝41.9
106.936.8
普通塑料159.92.8

牵引

电机

544.1橡胶254.4
不锈钢12普通塑料65.3
铸铝343.7电子控制器玻璃纤维4.5
110.51.1
钕(镝)铁硼磁铁30.2尼龙0.5
电子控制器18.5PET20.1
铸铝357.9聚丙烯28.8
183.6聚氨酯14.3
橡胶7.47.4
普通塑料6.5
氧化铝1.8
环氧树脂1.6

Table 5

List of components of lithium-ion power battery"

材料质量/kg材料质量/kg
锰酸锂331LiPF612
石墨188.1321.9
98不锈钢58.3
锻造铝160.3乙二醇42.1

Table 6

List of main components of lead batteries"

材 料质量/kg
聚丙烯1.7
19.3
硫酸2.2
玻璃纤维0.6
4

Table 7

Metal material recycling energy consumption"

能源种类钢材铝材铸铁
煤/kg0.313
柴油/kg3.08E-05
汽油/kg4.85E-05
天然气/m30.006 60.047
电力/(kW@h)1.1760.22110.6222.65

Table 8

CO2 emissions during process cycle"

阶 段工艺周期CO2排放量/kg
柴油公共汽车纯电动公共汽车
车身10 832.513 835.6
动力总成系统6 6701 332.7
牵引电机5 047.5
电子控制器4 572.7
传动系统2 8262 578.6
底盘8 62510 451.7
组装7 810.58 920.4
锂离子动力电池15 365.1
铅蓄电池60.860.8
运输1 138.21 216
金属报废回收7 089.611 581
不可回收物焚烧1 813.21 807
回收锂电池321.8
铅蓄电池报废8.78.7

Fig.2

CO2 emissions of buses during process cycle"

Table 9

Buses operation data"

车辆类型百公里能耗年运营里程/km能源消费强度
柴油公共汽车31 L5.48×104220 844 L
纯电动公共汽车90 kW·h5.48×104641 160 kW·h

Table 10

Mechanical oil extraction unit energy consumption"

原油分类能耗准入值(kW·h)/(102m·t)
稀油5.65
普通稠油3.9

Table 11

Energy consumption ratio of oil refining process"

能源原煤天然气燃料油柴油电力
比例/%48.93.811.91.733.8

Table 12

Oil transportation data"

运输

方式

原油运输成品油运输
比例/%平均运距/km比例/%平均运距/km
远洋5011 000257 000
铁路4574950900
管道8059000
水运10250151 200
公路001050

Table 13

Transportation mode for lignite"

方式百分比/%平均运距/km
铁路501000
公路20310
水路17650

Table 14

Energy consumption ratio of lignite mining"

能源原煤天然气汽油柴油电力
比例/%8011216

Table 15

Energy consumption of natural gas purification"

项 目单位能耗/[kgce·(104 m3-1
合计66.763 4
新鲜水0.006 9
循环水3.785 4
除盐水0.000 0
凝结水0.000 0
电/kW10.619 1
蒸汽/0.5 MPa44.137 4
燃气/(m3·h-18.214 6

Table 16

Energy consumption for transportation"

运输方式

能源强度

/[kJ·(t·km)-1

燃料结构
远洋23燃料油(100%)
铁路240柴油(55%),电(45%)
原油管道300燃料油(50%)
天然气管道372天然气(99%),电力(1%)
水运148燃料油(100%)
公路1 362柴油(68%),汽油(32%)

Table 17

CO2 emissions of buses during energy cycle"

类型WTPPTW总计
开采阶段加工阶段运输阶段使用阶段
柴油公共汽车/kg89 606.6102 553.324 727568 231.6785 118.8
纯电动公共汽车/kg8 445.7660 333.15 2340674 012.8

Fig.3

CO2 emissions ratio of buses during energy cycle"

Table 18

CO2 emissions of buses during life cycle"

类型工艺周期能源周期总计
WTPPTW

柴油公共

汽车/kg

46 873.9216 886.9568 231.6831 992.7

纯电动公共

汽车/kg

77 099.6674 012.80751 112.4

Fig.4

CO2 emissions ratio of buses during life cycle"

[1] 肖红, 邓梓浩, 任艳娟, 等. 城市交通运输碳排放预测模型及碳减排策略[J]. 重庆交通大学学报: 自然科学版, 2023, 42(9): 85-92, 98.
Xiao Hong, Deng Zi-hao, Ren Yan-juan, et al. Urban transportation carbon emission prediction model strategies[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(9): 85-92, 98.
[2] Bieker G. A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars[J]. Washington D.C.: Communications, 2021, 49(30): 847129-102.
[3] Wong E Y C, Ho D C K, So S, et al. Life cycle assessment of electric vehicles and hydrogen fuel cell vehicles using the greet model—a comparative study[J]. Sustainability, 2021, 13(9): 4872.
[4] 王雪然, 刘文峰, 张龙文, 等. 基于能源链的纯电动公交车全生命周期CO2减排效果研究[J]. 交通运输系统工程与信息, 2019, 19(1): 19-25.
Wang Xue-ran, Liu Wen-feng, Zhang Long-wen, et al. CO2 emission reduction effect of electric bus based on energy chain in life cycle[J]. Journal of Transportation Systems Engineering and Information Technology,2019(1): 19-25.
[5] 宋大凤, 吴西涛, 曾小华, 等. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报: 工学版, 2018, 48(5): 1313-1323.
Song Da-feng, Wu Xi-tao, Zeng Xiao-hua, et al. Life cycle cost analysis of mild hybrid heavy truck based on theoretical fuel consumption mode[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1313-1323.
[6] 王童, 杜轶群, 陈轶嵩, 等. 基于结构轻量化的城市客车车身生命周期评价[J]. 汽车工程, 2022, 44(5):778-788.
Wang Tong, Du Yi-qun, Chen Yi-song, et al. Life cycle assessment of city bus body based on structural lightweighting[J]. Automotive Engineering, 2022(5): 778-788.
[7] 田成诗, 张诗雅. 中国行业供应链碳足迹的来源分解分析——基于投入产出的生命周期评价模型[J]. 环境经济研究, 2019, 4(2): 58-75.
Tian Cheng-shi, Zhang Shi-ya. Source decomposition analysis of carbon footprint in China's industry supply chain: based on IO-LCA model[J]. Journal of Environmental Economics, 2019, 4(2): 58-75.
[8] Harris A, Soban D, Smyth B M, et al. Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 569-579.
[9] Chang C C, Liao Y T, Chang Y W. Life cycle assessment of alternative energy types-including hydrogen-for public city buses in Taiwan[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18472-18482.
[10] Ferrao P, Nhambiu J. A comparison between conventional LCA and hybrid EIO-LCA: analyzing crystal giftware contribution to global warming potential[M]∥Handbook of Input-Output Economics in Industrial Ecology,Dordrecht: Springer Netherlands, 2009: 219-230.
[11] 余大立, 张洪申. 纯电动与柴油货车全生命周期能耗及排放分析[J]. 环境科学学报, 2019, 39(6): 2043-2052.
Yu Da-li, Zhang Hong-shen, The life cycle analysis of energy consumption and emission of pure electric van and diesel van[J]. Acta Scientiae Circumstantiae, 2019(6): 2043-2052.
[12] 丁舟波, 李彬, 牛继高, 等. 电动汽车燃料生命周期评价研究[J]. 森林工程, 2017, 33(6): 56-59, 66.
Ding Zhou-bo, Li Bin, Niu Ji-gao, et al. Research on life cycle assessment of electric vehicle fuel[J]. Forest Engineering, 2017, 33(6): 56-59, 66.
[13] 施羽, 张华, 于智涵. 电动汽车全生命周期节能减排效益分析及环境影响评价[J]. 资源与产业, 2021,23(2): 100-109.
Shi Yu, Zhang Hua, Yu Zhi-han. Energy-saving benefits and environment impacts of electric vehicles lifecycle[J]. Resources & Industries, 2021(2): 100-109.
[14] 李娟, 杨沿平, 陈轶嵩. 铝合金与铸铁缸盖的生命周期评价对比分析[J]. 环境工程学报, 2015, 9(11):5642-5648.
Li Juan, Yang Yan-ping, Chen Yi-song. Comparative analysis on life cycle assessment between aluminum alloy and cast iron cylinder cover[J]. Chinese Journal of Environmental Engineering, 2015(11): 5642-5648.
[15] 张雷, 刘志峰, 王进京. 电动与内燃机汽车的动力系统生命周期环境影响对比分析[J]. 环境科学学报,2013, 33(3): 931-940.
Zhang Lei, Liu Zhi-feng, Wang Jin-jing. Comparative analysis of life cycle environmental impact between power system of electric and internal combustion engine vehicles[J]. Acta Scientiae Circumstantiae. 2013(3): 931-940.
[16] 程冬茹. 汽柴油全生命周期碳排放计算[D]. 北京: 中国石油大学化学工程与环境学院, 2016.
Cheng Dong-ru. Carbon emissions calculation of gasoline and diesel fuel based on life cycle assessment[D]. Beijing: College of Chemical Engineering and Environment, China University of Petroleum, 2016.
[17] 欧训民, 张希良. 中国终端能源的全生命周期化石能耗及碳强度分析[J]. 中国软科学, 2009(): 208-214.
Xun-min Ou, Zhang Xi-liang. Fossil energy consumption and GHG emissions of final energy by LCA in China[J]. China Soft Science,2009(Sup.2): 208-214.
[18] Ou X M, Yan X Y, Zhang X L. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China[J]. Applied Energy, 2011, 88(1): 289-297.
[19] 井晓燕. 天然气净化系统能耗分析及其节能优化研究[D]. 西安: 西安石油大学化学化工学院, 2019.
Jing Xiao-yan. Research on energy consumption analysis and energy saving optimization of natural gas purification system[D]. Xi´an: College of Chemistry and Chemical Engineering, Xi´an Shiyou University,2019.
[1] Hui-zhao TU,Chang LU,Miao-jia LU,Hao LI. Risk factors for autonomous vehicle road testing based on risk-avoiding disengagement [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1935-1943.
[2] Zhao-zheng HU,Xun-pei SUN,Jia-nan ZHANG,Ge HUANG,Yu-ting LIU. Vehicle-infrastructure-map cooperative localization method based on spatial-temporal graph model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1246-1257.
[3] Qing-jin XU,Rui FU,Ying-shi GUO,Fu-wei WU. Roadside prediction method for truck rollover on the curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1302-1310.
[4] Can-can SONG,Di-fei JING,Jun-feng XIE,Ke-xin KANG. Analysis on driving behaviors on flat curved sections of highways with advertising signs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1345-1354.
[5] Jin LI,Yu-tong SUN,Xiao-zhong WEI,Yu-ling JIAO. Design of bus priority signal considering flexible lane setting [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 448-456.
[6] Wen-yong LI,Cong-ruo MA,Qing-wei HU,Cheng-kun LIU,Guan LIAN,Guo-bin GU,Dan ZHOU. Bus speed guidance model based on station capacity limit and section green wave control [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3088-3103.
[7] SONG Da-feng, WU Xi-tao, ZENG Xiao-hua, YANG Nan-nan, LI Wen-yuan. Life cycle cost analysis of mild hybrid heavy truck based on theoretical fuel consumption model [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1313-1323.
[8] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection [J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[9] WANG Hai-wei, WEN Hui-ying, LIU Min. Experimental evaluation of nighttime driver's physiological characteristics in driving simulator [J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[10] JIANG Gui-yan, LIU Bin, SUI Xiao-yan, MA Ming-fang. Real time information collection of passenger flow in public transportation based on bus IC card charging system [J]. 吉林大学学报(工学版), 2016, 46(4): 1076-1082.
[11] LI Shi-wu, XU Yi, SUN Wen-cai, WANG Lin-hong, GUO Meng-zhu, CHAI Meng. Pupil diameter based construction conflict self-feedback discrimination method [J]. 吉林大学学报(工学版), 2016, 46(2): 418-425.
[12] ZHAO Shu-zhi, LIANG Shi-dong, MA Ming-hui, LIU Hua-sheng, ZHU Yong-gang. Real-time queue length estimation at signalized intersection [J]. 吉林大学学报(工学版), 2016, 46(1): 85-91.
[13] ZHU Jin-cheng, XIAO Feng, SHUAI Bin, LIU Xiao-bo. Impact and feasibility of charging taxis in pricing zone [J]. 吉林大学学报(工学版), 2015, 45(1): 89-96.
[14] ZHAO Shu-zhi, TIAN Qing-fei, CAO Yang. Transit efficiency network design model based on the restriction of station capacity [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 81-84.
[15] HU Hong-yu, WANG Qing-nian, QU Zhao-wei, LI Zhi-hui. Spatial pattern recognition and abnormal traffic behavior detection of moving object [J]. 吉林大学学报(工学版), 2011, 41(6): 1598-1602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .