Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1604-1616.doi: 10.13229/j.cnki.jdxbgxb.20230873

Previous Articles     Next Articles

Shear properties and stress-strain relationships characterization of Changsha compacted clay

An-shun ZHANG1,2(),Wei FU3,Jun-hui ZHANG1,2(),Feng GAO1,2   

  1. 1.Key Laboratory for Highway Engineering of Ministry of Education,Changsha University of Science & Technology,Changsha 410114,China
    2.Xiangjiang Laboratory,Changsha 410205,China
    3.CCCC Second Highway Consultants Co. ,Ltd. ,Wuhan 430056,China
  • Received:2023-08-18 Online:2025-05-01 Published:2025-07-18
  • Contact: Jun-hui ZHANG E-mail:cr11zhanganshun@163.com;zjhseu@csust.edu.cn

Abstract:

To investigate the shear properties and stress-strain relationships of subgrade compacted clay, a series of unconsolidated and undrained triaxial tests were carried out on Changsha clay under different degrees of compaction, moisture contents, loading rates and confining pressures. The results show that the elastic modulus and ultimate strength decay with the decrease of degree of compaction, the increase of moisture content and the decrease of confining pressure, but there is a slight fluctuation with the loading rate. The Mohr-Coulomb strength criterion of subgrade clay under complex conditions is established to describe the variation law of the strength of subgrade clay with various factors. The total cohesion and total internal friction angle increase significantly with the increase of degree of compaction and the decrease of moisture content. With the increase of loading rate, the total cohesion decreases first and then increases, and the total internal friction angle increases first and then decrease. However, the fluctuation amplitude of these two indexes is weak due to the change of loading rate. The unified characterization method on stress-strain curves of Changsha clay is proposed, which can reasonably describe the three types deformation curves with strain softening, stability and hardening.

Key words: road engineering, subgrade compacted clay, stress-strain relationship, elastic modulus, ultimate strength, shear strength parameter

CLC Number: 

  • TU411

Table 1

Basic engineering parameters of the tested clay"

液限

/%

塑限

/%

塑性

指数

最佳含

水率/%

最大干

密度/(g·cm-3

0.075 mm

通过率/%

比重
52.425.526.914.41.7367.72.66

Table 2

Scheme for triaxial test"

压实度

/%

含水率/OMC

加载速率/

(%×min-1

围压

/kPa

1961.0(14.4%)0.7030、60、90、120
2931.0(14.4%)0.7030、60、90、120
3901.0(14.4%)0.7030、60、90、120
4871.0(14.4%)0.7030、60、90、120
5961.2(17.3%)0.7030、60、90、120
6961.4(20.2%)0.7030、60、90、120
7961.6(23.0%)0.7030、60、90、120
8961.2(17.3%)0.5030、60、90、120
9961.2(17.3%)0.8530、60、90、120
10961.2(17.3%)1.0030、60、90、120

Fig.1

Flow chart of triaxial test procedure"

Fig.2

Stress-strain curves under different degrees of compaction"

Fig.3

Failure modes under different degrees of compaction"

Fig.4

Stress-strain curves under different moisture contents"

Fig.5

Failure modes under different moisture contents"

Fig.6

Stress-strain curves under different loading rates"

Fig.7

Failure modes under different loading rates"

Fig.8

Elastic modulus under different influence factors"

Fig.9

Ultimate strengths under different influence factors"

Table 3

Verification results of the proposed ultimate strength prediction model"

数据来源abcdefgR2
本研究(黏土)4.97456.75-391.51-1.322.810.097.410.97
文献[8](黏土)4.880.190.85-91.99185.090.2224.390.93
文献[9](黏土)1.921.610.03-20.0446.720.094.940.99
文献[10](黏土)2.362.14-0.14-5.4913.020.326.710.98
文献[24](黏土)0.013.52-1.44-767.091386.480.2958.940.96
文献[25](砂土)8.661.47-0.29-72.61102.140.0526.060.85

Fig.10

Mohr's semicircles and shear strength envelopes under different degrees of compaction"

Fig.11

Mohr's semicircles and shear strength envelopes under different moisture contents"

Fig.13

Shear strength parameters under different factors"

Fig.14

Prediction effect of parameters of the modified hyperbolic model"

Fig.15

Verification results of unified stress-strain characterization model of Changsha clay"

[1] 张哲, 付伟, 张军辉, 等. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报: 工学版, 2023, 53(6): 1790-1798.
Zhang Zhe, Fu Wei, Zhang Jun-hui, et al. Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1790-1798.
[2] Yang K H, Uzuoka R, Thuo J, et al. Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration[J]. Engineering Geology, 2017, 216: 13-30.
[3] Nhan T T, Matsuda H, Sato H, et al. Pore water pressure and settlement of clays under cyclic shear: effects of soil plasticity and cyclic shear direction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(2): No.04021185.
[4] Zhang J H, Li F, Zeng L, et al. Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 11-24.
[5] 李崛, 张安顺, 张军辉, 等. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报: 工学版, 2023, 53(6): 1782-1789.
Li Jue, Zhang An-shun, Zhang Jun-hui, et al. Model testing and numerical analysis of dynamic response of graded crushed rock base structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1782-1789.
[6] 刘寒冰, 张互助, 王静. 冻融及含水率对压实黏质土力学性质的影响[J]. 岩土力学, 2018, 39(1): 158-164.
Liu Han-bing, Zhang Hu-zhu, Wang Jing. Effect of freeze-thaw and water content on mechanical properties of compacted clayey soil[J]. Rock and Soil Mechanics, 2018, 39(1): 158-164.
[7] Xu W B, Wang X C. Effect of freeze-thaw cycles on mechanical strength and microstructure of silty clay in the Qinghai-Tibet plateau[J]. Journal of Cold Regions Engineering, 2022, 36(1):No.04021018.
[8] 龙万学, 陈开圣, 肖涛, 等. 非饱和红黏土三轴试验研究[J]. 岩土力学, 2009, 30(): 28-33.
Long Wan-xue, Chen Kai-sheng, Xiao Tao, et al. Research of general triaxial test for unsaturated red clay[J]. Rock and Soil Mechanics, 2009, 30(Sup.2): 28-33.
[9] 周春梅, 程月, 王勇, 等. 压实黄土抗剪强度参数影响因素研究[J]. 防灾减灾工程学报, 2018, 38(2): 258-264.
Zhou Chun-mei, Cheng Yue, Wang Yong, et al. Study on influencing factors of shear strength parameters of compacted loess[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(2): 258-264.
[10] Wei C B, Apel D, Zhang Y H. Shear behavior of ultrafine magnetite tailings subjected to freeze-thaw cycles[J]. International Journal of Mining Science and Technology, 2019, 29: 609-616.
[11] 詹良通, 孙倩倩, 郭晓刚, 等. 花岗岩风化料弃土快速堆填过程中不排水抗剪强度评估[J]. 岩土力学, 2021, 42(1): 50-58.
Zhan Liang-tong, Sun Qian-qian, Guo Xiao-gang, et al. Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling[J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
[12] Zhang A S, Zhang J H, Peng J H, et al. Effect of freeze-thaw cycles on mechanical properties of an embankment clay: laboratory tests and model evaluations[J]. Frontiers in Earth Science, 2022, 10: 865348.
[13] 刘红玫, 钟秀梅. 黄土抗剪强度的三轴试验[J]. 地震工程学报, 2011, 33(): 243-245.
Liu Hong-mei, Zhong Xiu-mei. Triaxial test on the shearing strength of loess[J]. China Earthquake Engineering Journal, 2011, 33(Sup.1): 243-245.
[14] 邓亚虹, 魏宝华, 王晗, 等. 原状黄土变形与强度特性的加载速率效应[J]. 中国公路学报, 2016, 29(7): 22-29.
Deng Ya-hong, Wei Bao-hua, Wang Han, et al. Loading rate effect on deformation and strength characteristics of undisturbed loess[J]. China Journal of Highway and Transport, 2016, 29(7): 22-29.
[15] Toyota H, Takada S, Susami A. Rate dependence on mechanical properties of unsaturated cohesive soil with stress-induced anisotropy[J]. Soils and Foundations, 2019, 59: 1013-1023.
[16] 林波, 张锋, 冯德成, 等. 冻融循环作用后饱和黏土的应变速率效应试验研究[J]. 岩土力学, 2017, 38(7): 2007-2014.
Lin Bo, Zhang Feng, Feng De-cheng, et al. Experimental investigation on strain rate effects of saturated clay subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2017, 38(7): 2007-2014.
[17] Zhang J H, Ding L, Zheng J L, et al. Deterioration mechanism and rapid detection of performances of an existing subgrade in southern China[J]. Journal of Central South University, 2020, 27(7): 2134-2147.
[18] 郑健龙, 张锐. 公路膨胀土路基变形预测与控制方法[J]. 中国公路学报, 2015, 28(3): 1-10.
Zheng Jian-long, Zhang Rui. Prediction and control method for deformation of highway expansive soil subgrade[J]. China Journal of Highway and Transport, 2015, 28(3): 1-10.
[19] 姚占勇, 蒋红光, 孙梦林, 等. 细粒土路基平衡密度状态分析[J]. 中国公路学报, 2020, 33(9): 94-103.
Yao Zhan-yong, Jiang Hong-guang, Sun Meng-lin, et al. Analysis of equilibrium density state of highway subgrade with fine soils[J]. China Journal of Highway and Transport, 2020, 33(9): 94-103.
[20] Liu B H, Kong L W, Xu G F, et al. Effects of three-dimensional cyclic stresses on permanent deformation of natural undisturbed clay[J]. International Journal of Geomechanics, 2022, 22(12):04022220.
[21] 臧濛, 孔令伟, 郭爱国. 静偏应力下湛江结构性黏土的动力特性[J]. 岩土力学, 2017, 38(1): 33-40.
Zang Meng, Kong Ling-wei, Guo Ai-guo. Effects of static deviatoric stress on dynamic characteristics of Zhanjiang structured clay[J]. Rock and Soil Mechanics, 2017, 38(1): 33-40.
[22] 王家全, 畅振超, 唐毅, 等. 循环荷载下加筋砾性土填料的动三轴试验分析[J]. 岩土力学, 2020, 41(9): 2851-2860.
Wang Jia-quan, Chang Zhen-chao, Tang Yi, et al. Dynamic triaxial test analysis of reinforced gravel soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(9): 2851-2860.
[23] Zhang J H, Li F, Zeng L, et al. Effect of cushion and cover on moisture distribution in clay embankments in Southern China[J]. Journal of Central South University, 2020, 27(7): 1893-1906.
[24] 胡田飞, 刘建坤, 房建宏, 等. 冻融循环下压实度对粉质黏土力学性质影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(6): 1495-1503.
Hu Tian-fei, Liu Jian-kun, Fang Jian-hong, et al. Experimental study on the effect of cyclic freezing-thawing on mechanical properties of silty clay with different degrees of compaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1495-1503.
[25] 严晗, 刘建坤, 王天亮. 冻融对粉砂土力学性能影响的试验研究[J]. 北京交通大学学报, 2013, 37(4): 73-77.
Yan Han, Liu Jian-kun, Wang Tian-liang. Experimental research of influences of freeze-thaw on the mechanical properties of silty soil[J]. Journal of Beijing Jiaotong University, 2013, 37(4): 73-77.
[26] Yang Y G, Gao F, Lai Y M. Modified Hoek-Brown criterion for nonlinear strength of frozen soil[J]. Cold Regions Science and Technology, 2013, 86: 98-103.
[27] 李晶晶, 孔令伟, 凌贤长. 高铁堑坡粉质黏土原位强度特性与应力历史效应[J]. 湖南大学学报: 自然科学版, 2019, 46(3): 99-105.
Li Jing-jing, Kong Ling-wei, Ling Xian-zhang. Insitu strength characteristics and stress history effect of silty soil on high-speed railway cut slope[J]. Journal of Hunan University (Natural Sciences), 2019, 46(3): 99-105.
[28] 周葆春, 孔令伟, 马全国, 等. 压实膨胀土非饱和抗剪强度的湿度与密度效应[J]. 岩土力学, 2017, 38(): 240-246.
Zhou Bao-chun, Kong Ling-wei, Ma Quan-guo, et al. Effects of moisture and density states on unsaturated shear strength of compacted expansive soil[J]. Rock and Soil Mechanics, 2017, 38(Sup.1): 240-246.
[29] Prevost J, Hoeg K. Soil mechanics and plasticity analysis of strain softening[J]. Géotechnique, 1975, 25(2): 279-297.
[30] 赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 187(8): 1612-1617.
Lai Yuan-ming, Cheng Hong-bin, Gao Zhi-hua, et al. Stress-strain relationships and nonlinear mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 187(8): 1612-1617.
[1] Li-ming WANG,Zi-kun SONG,Hui ZHOU,Wen WEI,Hao YUAN. Rheological response and response mechanism of petroleum asphalt treated with ultrasound [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1346-1355.
[2] Jun-peng XU,Chuan-feng ZHENG,Yan-tao DU,Yu-hang WANG,Zheng LU,Wen-jun FAN. Damage effects of water⁃heat⁃force coupling in permeable asphalt mixture in cold region [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 877-887.
[3] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[4] Yan-hai YANG,Bai-chuan LI,Ye YANG,Chong-hua WANG,Liang YUE. Aggregate ellipsoidal surface base reconstruction with virtual splitting tests [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 653-663.
[5] Teng-fei NIAN,Zhao HAN,Zhi-qiang WEI,Guo-wei WANG,Jin-guo GE,Ping LI. Mesoscopic numerical modeling method of asphalt mix considering aggregate morphology [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 639-652.
[6] Wan-feng WEI,Ling-yun KONG,Wei-an XUAN,Fan YANG,Peng GUO. Review of characteristics of asphalt foaming and moisture sensitivity of warm mix mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 20-35.
[7] Feng-chun GUO,Hai-peng BI,Hai-tao WANG,Shu-zheng WU,Hong-yu YANG. Viscoelastic behavior of carbon nano powder modified asphalt based on time-temperature equivalence [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 221-229.
[8] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[9] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[10] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[11] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[12] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[13] Jin XU,Zheng-huan CHEN,Qi-shuo LIAO,Zhan-ji ZHENG,He-shan ZHANG. Mental workload of drivers at high-density interchanges of freeways based on ECG data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2807-2818.
[14] Li-hua LI,Hao-ran KANG,Xin ZHANG,Heng-lin XIAO,Yi-ming LIU,Xin-long ZHOU. Dynamic characteristics of reinforced soil-rock mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2897-2907.
[15] Hong-zhou ZHU,Chun-li SU,Nai-peng TANG,Jun-yao WEI,Hong-jun SUN. Sampling and quantitative analysis method of emissions from crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2922-2929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhuang Wei,Song Guang-ming,Wei Zhi-gang,Song Ai-guo. Design and implementation of a mobile node for wireless sensor networks[J]. 吉林大学学报(工学版), 2007, 37(04): 939 -943 .
[2] ZHOU Ping,GUO Wei,SHEN Guo-zhe,HU Ping. Trimming springback algorithm in thin sheet forming simulation[J]. 吉林大学学报(工学版), 2010, 40(04): 931 -0936 .
[3] LIU Shun-an,YAO Yong-ming,SHANG Tao,CHEN Yan-li,MIAO Miao. Full hydraulic drive system of minitype loader based on secondary regulation technique[J]. 吉林大学学报(工学版), 2011, 41(03): 665 -669 .
[4] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1386 -1391 .
[5] MA Nan, SHAO Chun-fu, ZHAO Yi. Optimized modeling of signalized intersections coordination based on two-way band width maximization[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 19 -0024 .
[6] LIU Yu-mei,WANG Qing-nian,CAO Xiao-ning,XIONG Wei,LI Xue-hai. Vehicle lubrication oil on-line monitoring method and monitoring system[J]. 吉林大学学报(工学版), 2009, 39(06): 1441 -1445 .
[7] ZONG Chang-fu,CHEN Shuang,FENG Gang,YIN Gang,XIANG Hui. Evaluation of vehicle ride comfort based on frequency weighted filtering[J]. 吉林大学学报(工学版), 2011, 41(6): 1517 -1521 .
[8] SONG Shao-zhong, KONG Fan-sen, WANG Li-fang. More varieties of material allocation and supply point route choice[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 144 -148 .
[9] ZHAO Wen-zhu, YIN Yong-guang, YU Zhi-peng, YU Yi-ding, LIU Jing-bo. FTIR structure analysis and microwave extraction of polysaccharides from corn silk[J]. 吉林大学学报(工学版), 2012, 42(02): 515 -520 .
[10] WANG Song-lin, MA Wen-xing, HU Jing, CHU Ya-xu, SONG Jian-jun. Improvement and analysis of over-running clutch of dual-turbine torque converter[J]. 吉林大学学报(工学版), 2013, 43(04): 922 -927 .