Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1617-1628.doi: 10.13229/j.cnki.jdxbgxb.20230788

Previous Articles     Next Articles

Dynamic characteristics and microstructural evolution of solidified sludge under wet-dry and freeze-thaw cycling

Xie-qun WANG1(),Xiang-wei YU1,Wei-lie ZOU2(),Zhong HAN2   

  1. 1.School of Civil Engineering & Architecture,Wuhan University of Technology,Wuhan 430070,China
    2.School of Civil Engineering,Wuhan University,Wuhan 430072,China
  • Received:2023-07-27 Online:2025-05-01 Published:2025-07-18
  • Contact: Wei-lie ZOU E-mail:xqscwang@126.com;zwilliam@whu.edu.cn

Abstract:

To investigate the feasibility of using magnesium oxychloride cement solidified sludge as subgrade, dynamic triaxial and microstructural tests were conducted on solidified sludge under different wet-dry and freeze-thaw cycles and loading conditions. The influences of confining pressure, dynamic load amplitude and loading frequency on the dynamic characteristics of solidified sludge were studied in terms of dynamic shear modulus and damping ratio, and a prediction model for dynamic shear modulus considering wet-dry and freeze-thaw cycle numbers was established. Quantitative analysis of microscopic pore parameters revealed the microstructural evolution of solidified sludge after different wet-dry and freeze-thaw cycle numbers, and correlation analysis was performed between microstructural parameters and macroscopic mechanical properties. The results show that after wet-dry and freeze-thaw conditioning, the dynamic shear modulus of specimens decreases while the damping ratio increases progressively, and wet-dry cycles lead to greater stiffness deterioration than freeze-thaw cycles. As confining pressure and loading frequency increase, the dynamic shear modulus of solidified sludge increases while the damping ratio decreases. Wet-dry and freeze-thaw cycles increase the porosity and coarse pores of solidified sludge, and the pore shape gradually transforms into smooth lamellar. The cycle number and loading frequency have more significant effects on the dynamic characteristics of sludge than confining pressure and dynamic stress amplitude. Among the microstructural morphology parameters, porosity has the greatest influence on the dynamic properties of sludge.

Key words: geotechnical engineering, solidified sludge, dry wetcycle, freeze-thaw cycle, dynamic shear modulus, damping ratio, microscopic structure

CLC Number: 

  • TU414

Table 1

Basic physical properties of the sludge"

液限wL/%塑限wp/%

塑性

指数Ip

比重

Gs

最大干密

ρmax/(g·cm-3

最优含水率wopt/%

CBR

/%

3412222.71.9611.45.9

Table 2

Basic physical properties of the solidified sludge"

液限wL/%塑限wp/%塑性指数Ip

比重

Gs

最大干密度

ρmax/(g·cm-3

最优含水率wopt/%

CBR

/%

3315182.61.7814.872

Table 3

Test programs"

类型循环次数N围压σc/kPa频率f/Hz
对照027.6,41.4,55.21
冻融/干湿1,3,5,741.41
727.6,55.21
741.42,3

Fig.1

Schematic diagram of dynamic parameter calculation"

Fig.2

Schematic diagram of micro parameter calculation"

Fig.3

G-Nload and λ-Nload variation curve"

Fig.4

Dynamic shear modulus variation curve"

Fig.5

Damping ratiovariation curve"

Fig.6

Ge-σd-e and λe-σd-e variation curve"

Fig.7

Attenuation of shear modulus after DW and FT cycles"

Fig.8

GR and λRcurve under different confining pressures"

Fig.9

GR and λR curve under different loading frequency"

Table 4

Relevancy between environmental factor and dynamic characteristic indicators"

动力特性

指标

关联度Ri
循环次数围压加载频率动应力
动剪模量0.7250.6570.6720.579
阻尼比0.7460.6750.6810.596

Fig. 10

SEM scanning results of samples subjected to different cycles (×10 000)"

Fig. 11

Quantitative analysis of micro indicators"

Table 5

Relevancy between micro-parameters and dynamic characteristic indicators"

动力特性

指标

关联度Ri
孔隙率平均圆形度定向概率熵平均分形维数
动剪模量0.8350.7840.7280.717
阻尼比0.7820.7750.7610.765
[1] 李丽华, 韩琦培, 杨星, 等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报, 2023, 56 (12): 166-176.
Li Li-hua, Han Qi-pei, Yang Xing, et al. Mechanical properties and micro-mechanisms of RHA-cement solidified sludge[J]. China Civil Engineering Journal, 2023, 56 (12): 166-176.
[2] Jin F, Wang F, Altabbaa A. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders[J]. Chemosphere, 2016, 144:681-688.
[3] Viani A, Lanzafame G, Chateigner D, et al. Microstructural evolution and texture analysis of magnesium phosphate cement[J]. Journal of the American Ceramic Society, 2020, 103(2): 1414-1424.
[4] 刘维正, 徐阳, 蔡雨, 等. 湿化作用下重载铁路改良膨胀土动力响应与累积变形试验研究[J]. 铁道学报, 2023, 45(2): 127-138.
Liu Wei-zheng, Xu Yang, Cai Yu, et al. Dynamic response accumulative deformation of modified expansive soil of heavy-haul railway under wetting action[J]. Journal of the China Railway Society, 2023, 45(2): 127-138.
[5] 王协群, 张伊, 彭琛, 等. 废旧橡胶轮胎颗粒-水泥改性强膨胀土的长期路用性能研究[J]. 公路, 2023, 68(6): 362-370.
Wang Xie-qun, Zhang Yi, Peng Chen, et al. Road performance of highly expansive soil modified with waste rubber tire particles and cement[J]. Highway, 2023, 68(6): 362-370.
[6] Zhao G T, Han Z, Zou W L, et al. Evolution of mechanical behaviours of an expansive soil during drying-wetting, freeze-thaw, and drying-wetting-freeze-thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 8109-8121.
[7] 李甜果, 孔令伟, 周振华. 原状膨胀土脱湿过程中多层次微细观结构演化特征与概化模型[J]. 岩土工程学报, 2022, 44(): 35-39.
Li Tian-guo, Kong Ling-wei, Zhou Zhen-hua. Evolution characteristics and generalized model of multilevel microstructure of undisturbed expansive soils during dehumidification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(Sup.1): 35-39.
[8] 安然, 孔令伟, 张先伟, 等. 干湿循环效应下花岗岩残积土结构损伤的多尺度研究[J]. 岩石力学与工程学报, 2023, 42(3): 758-767.
An Ran, Kong Ling-wei, Zhang Xian-wei, et al. A multi-scale study on structure damage of granite residual soil under wetting-drying environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 758-767.
[9] 张建新, 马昌虎, 郎瑞卿, 等. 不同冻融模式下淤泥质土力学及微观结构特性研究[J]. 岩石力学与工程学报, 2023, 42(): 3801-3811.
Zhang Jian-xin, Ma Chang-hu, Lang Rui-qing, et al. Experimental study on mechanical properties and microstructure of muddy soil under different freeze-thaw modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(Sup.1): 3801-3811.
[10] 刘文化, 杨庆, 唐小微, 等. 干湿循环条件下粉质黏土在循环荷载作用下的动力特性试验研究[J]. 水利学报, 2015, 46(4): 425-432.
Liu Wen-hua, Yang Qing, Tang Xiao-wei, et al. Experimental study on the dynamic characteristics of silt clay subjected to drying-wetting cycles under cyclic loading[J]. Journal of Hydraulic Engineering, 2015, 46(4): 425-432.
[11] Wu H, Shao S, Shao S, et al. Variations in dynamic shear modulus of loess exposed to dry-wet cycles from Xi'an area, China[J]. Soil Dynamics and Earthquake Engineering, 2023, 173: No.108126.
[12] 胡再强, 黄帅, 周衡立, 等. 干湿循环条件下人工制备遗址土动力特性试验研究[J]. 岩石力学与工程学报, 2022, 41(): 3499-3507.
Hu Zai-qiang, Huang Shuai, Zhou Heng-li, et al. Experimental study on dynamic characteristics of artificial ruins under drying-wetting cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup.2): 3499-3507.
[13] 魏新江, 庄家煌, 丁智, 等. 地铁循环荷载作用下冻融土滞回曲线及阻尼比特性研究[J]. 岩石力学与工程学报, 2019, 38(10): 2092-2102.
Wei Xin-jiang, Zhuang Jia-huang, Ding Zhi, et al. Research on the characteristics of hysteretic curves and damping ratio of frozen-thawed soils under cyclic subway loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2092-2102.
[14] 徐永丽, 董子建, 周吉森, 等. 冻融及不同温度下石灰改良盐渍土动力参数研究[J]. 岩土工程学报, 2022, 44(1): 90-97.
Xu Yong-li, Dong Zi-jian, Zhou Ji-sen, et al. Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97.
[15] Lin B, Zhang F, Feng D, et al. Dynamic shear modulus and damping ratio of thawed saturated clay under long-term cyclic loading[J]. Cold Regions Science and Technology, 2018, 145: 93-105.
[16] Tang S, Hu Y, Ren W, et al. Modeling on the hydration and leaching of eco-friendly magnesium oxychloride cement paste at the micro-scale[J]. Construction and Building Materials, 2019, 204: 684-690.
[17] Chang C, Dong J, Xiao X, et al. Long-term mechanical properties and micro mechanism of magnesium oxychloride cement concrete[J]. Advances in Cement Research, 2020, 32(8): 371-378.
[18] 李颖, 余红发, 董金美, 等. 氯氧镁水泥的水化产物、相转变规律和抗水性评价方法的研究进展[J]. 硅酸盐学报, 2013, 41(11): 1465-1473.
Li Ying, Yu Hong-fa, Dong Jin-mei, et al. Reseach development on hydration product, phase transformation and water resistance evaluation method of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1465-1473.
[19] Yao K, Wang W, Li N, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil[J]. Construction and Building Materials, 2019, 206: 160-168.
[20] Wang D, Di S, Gao X, et al. Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge[J]. Construction and Building Materials, 2020, 250: No.118933.
[21] Wang D, Gao X, Liu X, et al. Strength, durability and microstructure of granulated blast furnace slag-modified magnesium oxychloride cement solidified waste sludge[J]. Journal of Cleaner Production, 2021, 292: No.126072.
[22] . 公路土工试验规程 : [S].
[23] 刘宁. 氯氧镁水泥基多相胶凝材料改性固化淤泥的路用性能研究[D]. 武汉: 武汉理工大学土木工程与建筑学院, 2022.
Liu Ning. Study on road performance of modified solidified mud by magnesium oxychloride cement-based multiphase cementing material[D]. Wuhan: School of Civil Engineering and Architecture, Wuhan University of Technology, 2022.
[24] 王协群, 刘宁, 李智奇, 等. 干湿循环作用下氯氧镁水泥基多相胶凝材料改性固化淤泥的水力-力学特性[J]. 岩土工程学报, 2023, 45(10): 2004-2013.
Wang Xie-qun, Liu Ning, Li Zhi-qi, et al. Hydro-mechanical behaviors of sludge stabilized with magnesium oxychloride cement-based multi-cementitious materials under influence of drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2004-2013.
[25] 赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6):1139-1146.
Zhao Gui-tao, Han Zhong, Zou Wei-lie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021,43(6):1139-1146.
[26] 刘维正, 徐阳, 石志国, 等. 湿化作用下改良膨胀土永久变形特性多级加载试验研究[J]. 中南大学学报: 自然科学版, 2022, 53(1): 296-305.
Liu Wei-zheng, Xu Yang, Shi Zhi-guo, et al. Characterization of permanent deformation of modified expansive soil under wetting effect using multi-stage dynamic triaxial test[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 296-305.
[27] Ren J, Vanapalli S K, Han Z, et al. The resilient moduli of five Canadian soils under wetting and freeze-thaw conditions and their estimation by using an artificial neural network model[J]. Cold Regions Science and Technology, 2019, 168: No.102894.
[28] T307-99. Standard method of test for determining the resilient modulus of soils and aggregate materials [S]. Washington, DC: American Association of State Highway and Transportation Officials, 1999.
[29] 蔡袁强, 赵莉, 曹志刚, 等. 不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J]. 岩石力学与工程学报, 2017, 36(5): 1238-1246.
Cai Yuan-qiang, Zhao Li, Cao Zhi-gang, et al. Experimental study on dynamic characteristics of unbound granular materials under cyclic loading with different frequencies[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1238-1246.
[30] 彭瑞东, 谢和平, 鞠杨. 二维数字图像分形维数的计算方法[J]. 中国矿业大学学报, 2004, 50(1): 22-27.
Peng Rui-dong, Xie He-ping, Ju Yang. Computation method of fractal dimension for 2-D digital image [J]. Journal of China University of Mining & Technology, 2004, 50(1): 22-27.
[31] 谭学瑞, 邓聚龙. 灰色关联分析:多因素统计分析新方法[J]. 统计研究, 1995, 12(3): 46-48.
Tan Xue-rui, Deng Ju-long. Grey relational analysis: a new method for multifactor statistical analysis[J]. Statistical Research, 1995, 12(3): 46-48.
[32] Delage P, Audiguier M, Cui Y-J, et al. Microstructure of a compacted silt[J]. Canadian Geotechnical Journal, 1996, 33(1): 150-158.
[1] Jing-yang YU,Dong-zhao LI,Zhi-qing ZHANG,Zhen WANG,Hai-lin SUN,Hai-ling BU,Ming-chun LI. Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 888-898.
[2] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Wen-zhe CAO,Xin-long ZHOU,Shao-ping HUANG. Experiment on cyclic shear of geosynthetic reinforced construction waste soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1612-1623.
[3] Hua-fei HE,Zhao-ping LI,Rui-an FU,Shao-lin MA,Ming-li HUANG. Experiment on seismic performance of prefabricated sidewall joints considering strata restraint effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1601-1611.
[4] Ya-feng GONG,Bai-xin LIU,Jian-xing YANG,Feng HE,Liang SUN,Li-hua TIAN. Parameter correction of probabilistic finite element benchmark model based on deep foundation pit construction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3534-3544.
[5] Lin LI,Ke-ren SHEN,Shi-yu HE,Zhen-wang CHEN. Full-field deformation measurement on unconfined specimen based on 3D-DIC and multi-camera photogrammetry [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3255-3264.
[6] Li-hua LI,Hao-ran KANG,Xin ZHANG,Heng-lin XIAO,Yi-ming LIU,Xin-long ZHOU. Dynamic characteristics of reinforced soil-rock mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2897-2907.
[7] Fang-cheng LIU,Jiang WANG,Meng-tao WU,Guo-bin BU,Jie HE. Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2542-2553.
[8] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Guo-jin TAN. Temperature field and frost heaving analysis of prefabricated box culvert based on field monitoring [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2321-2331.
[9] Ying-xin HUI,Jia-wei CHEN. Squeezed branch pile groups optimization method based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2089-2098.
[10] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Dong-ming ZHOU,Guo-jin TAN,Xiao-ming HUANG. Acoustic characterization of bond⁃slip process between basalt fiber reactive powder concrete and steel strand [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1819-1832.
[11] Zhe ZHANG,Wei FU,Jun-hui ZHANG,Chao HUANG. Long⁃term characterising plastic behavior of thawed subgrade clay under cyclic loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1790-1798.
[12] Shun LIU,Xiao-wei TANG,Yi-xiao LUAN. Influence of Rayleigh damping coefficient on seismic response of subway structure in liquefiable soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 159-169.
[13] Liang TANG,Pan SI,Jie CUI,Xian-zhang LING,Xiao-feng MAN. Pseudo-static analysis method of pile group earthquake response in liquefying mild inclined sloping ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 847-855.
[14] Ping JIANG,Lin ZHOU,Tian-hao MAO,Jun-ping YUAN,Wei WANG,Na LI. Damage model and time effect of cement⁃modified waste slurry [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2874-2882.
[15] Yan-hai YANG,Hong CUI,Ye YANG,Huai-zhi ZHANG,He LIU. Effect of freeze-thaw cycle on performance of unsaturated emulsified asphalt cold recycled mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2352-2359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Kege, YAN Chuliang, ZHANG Shuming. Estimation for Fatigue Damage of Airplane Landing Gear[J]. 吉林大学学报(工学版), 2005, 35(06): 660 -0664 .
[2] LIU Yu-mei,WANG Qing-nian,CAO Xiao-ning,XIONG Wei,LI Xue-hai. Vehicle lubrication oil on-line monitoring method and monitoring system[J]. 吉林大学学报(工学版), 2009, 39(06): 1441 -1445 .
[3] XU Tao, QIU Bing, CHENG Fei, JIN Yan-zhong, JIANG Yong-zhou, ZHAO Shi-jia. Structural reanalysis algorithm study of topological modifications based on even lines Epsilon accelerated method[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 246 -249 .
[4] Chen Hong-bin,Feng Jiu-chao . Generating method of chaotic frequency hopping codes and its application in communications[J]. 吉林大学学报(工学版), 2008, 38(01): 211 -218 .
[5] Variable structure control of flexible manipulator based on distributed parameter model . Variable structure control of flexible manipulator based on distributed parameter model[J]. 吉林大学学报(工学版), 2008, 38(04): 924 -929 .
[6] ZHEN Zi-yang, WANG Dao-bo, HU Yong, FAROOQ M. . Information fusion filtering for discrete dynamic stochastic system
[J]. 吉林大学学报(工学版), 2009, 39(02): 484 -0488 .
[7] ZOU Nai-wei,FANG Yong-long,WANG Qing-nian,LIU Jin-gang,HUANG Wei, WANG Wei . Influence of auxiliary brake on braking performance of frontdrive car
[J]. 吉林大学学报(工学版), 2009, 39(02): 291 -0295 .
[8] Cheng Guang-ming,Li Xiao-tao,Zeng Ping,Yang Zhi-gang . Inertial impact driving movement mechanism actuated by multilayer piezoelectric actuator[J]. 吉林大学学报(工学版), 2007, 37(01): 85 -88 .
[9] ZONG Fang, JUAN Zhi-cai, GAO Yan, ZHAO Shu-zhi . Evaluation of impact of traffic congestion pricing policy on traffic system
[J]. 吉林大学学报(工学版), 2009, 39(02): 343 -0348 .
[10] LIU Ying-ting, LIU Xin, LI Zan, ZHANG Hai-lin. Collusion-resistant dynamic spectrum resource renting and offering mechanism[J]. 吉林大学学报(工学版), 2011, 41(05): 1497 -1502 .