吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 463-467.

Previous Articles     Next Articles

Lung nodule recognition based on image pattern

LI Yang1,2, SHI Dong-cheng2, WANG Ke1, WANG Yan3, WEI Yan-fang4   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130012, China;
    2. College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China;
    3. Department of Aerial Information Rivalry, Aviation University of Air Force, Changchun 130022, China;
    4. Changchun Branch, Jishi Media Company Limited, Changchun 130000, China
  • Received:2012-06-05 Published:2013-06-01

Abstract:

To solve the spatial information loss problem,the least squares support vector machine based on matrix patterns was applied to the recognition of lung nodule using image matrix as input.20 sets of CT images were used in the experiments.The 20 true nodules and 20 false ones extracted were used to test the function of classifier.The cross validation of the regularization parameters was obtained by the grid searching method to get the optimal parameters of the linear kernel function.The experimental results show that this method is feasible and effective for the detection of lung nodule.

Key words: information processing technology, lung nodule recognition, least squares support vector machine (LS-SVM), matrix patterns, cross-validation

CLC Number: 

  • TP391.4

[1] Greenlee R T,Murray T,Bolden S.Wingo PA:Cancer statistics,2000[J].CA Cancer J Clin 2000,50:7-33.

[2] Kunio D.Computer-aided diagnosis in medical imaging:historical review,current status and future potential [J].Computerized Medical Imaging and Graphics,2007,31:198-211.

[3] Giger M L,Chan H P,Boone J.Anniversary paper:history and status of CAD and quantitative image analysis:the role of medical physics and AAPM [J].Medical Physics,2008,35(12):5799-5820.

[4] Dehmeshki J,Amin H,Valdivieso M,et al.Segmentation of pulmonary nodules in thoracic CT scans:a region growing approach [J].IEEE Trans Med Imaging,2008,27(4):467-480.

[5] Liu L,Liu W Y.A method of pulmonary nodules detection with support vector [C]//Proceedings of the 2008 Eighth International Conference on Intel-ligent Systems Design and Applications Medical Physics,Kaohsiung,Taiwan:ISDA,2008:32-35.

[6] 孙斌,周云龙.基于支持向量机和小波包能量特征的气液两相流流型识别方法[J].中国电机工程学报,2005,25(17):93-99. Sun Bin,Zhou Yun-long.Identification method of gas-liquid two-phase flow regime based on support vector machine and wavelet packet energe feature[J].Proceedings of the CSEE,2005,25(17):93-99.

[7] 贺秋伟,王龙山,刘庆民,等.基于支持向量机回归的小尺寸零件精密测量[J].光学·精密工程,2007,15(4):557-563. He Qiu-wei,Wang Long-shan,Liu Qing-min,et al.Precision measurement for small size parts based on support vector regression[J].Opt Precision Eng,2007,15(4):557-563.

[8] Suzuki K,Armato S G III,Li F,et al.Massive training artificial neural network(MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography[J].MedPhys (S2222-2233),2003,30(6):1602-1617.

[9] 孙申申,任会之,康雁,等.基于遗传算法和支持向量机的肺结节检测[J].系统仿真学报,2011,23(3):497-501. Sun Shen-shen,Ren Hui-zhi,Kang Yan,et al. Lung nodule detection by GA and SVM[J].Journal of System Simulation,2011,23(3):497-501.

[10] 刘露,刘宛予,楚春雨,等.胸部CT图像中孤立性结节良恶性快速分类[J].光学精密工程[J].2009,17(8):2060-2067. Liu Lu,Liu Wan-yu,Chu Chun-yu,et al.Fast classification of benign and malignant solitary pulmonary nodules in CT image[J].Optics and Precision Engineering,2009,17(8):2060-2067.

[11] Wang Z,Chen S C.New least squares support vector machines based on matrix patterns[J].Neural Processing Letters,2007,26:41-56.

[12] Beymer D,Poggio T.Image representations for visual learning [J].Science,1996,272:1905-1909.

[13] Chen S C,Zhu Y L,Zhang D Q,et al.Feature extraction approaches based on matrix pattern:MatPCA and MatFLDA[J].Pattern Recog Lett,2005,26:1157-1167.

[14] Wang H,Ahuja N.Rank-R approximation of tensors:using image-as-matrix representation[C]//IEEE Conference on Computer Vision and Pattern Recognition,2005.

[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!