吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 625-632.doi: 10.13229/j.cnki.jdxbgxb20161210

Previous Articles     Next Articles

Improved feature-adaptive subdivision for Catmull-Clark surface model

LIN Jin-hua1, WANG Yan-jie2, SUN Hong-hai3   

  1. 1.School of Applied Technology, Changchun University of Technology, Changchun 130012, China;
    2.Department of Mechanical and Electronic Engineering,Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    3.Dayan Institute, University of Chinese Academy of Sciences, Changchun 130033, China
  • Received:2016-11-10 Online:2018-03-01 Published:2018-03-01

Abstract: In order to solve the problem of over-subdivision of Fast Adaptive Segmentation (FAS) algorithm, a dynamic adaptive feature subdivision method is proposed. First, the Feature Processing Unit (FPU) is constructed to generate the dynamic subdivision factor for the irregular block. The subdividing depth of the feature block is calculated and the irregular block of the feature region is refined according to the Catmull-Clark subdivision rule. Then, the number of blocks is controlled for Graphics Processing Unit (GPU), the block buffer and subdivision table are established to deal with each level of the same type of blocks in parallel, which improves the speed of subdivision and rendering. Finally, the data structure of the traditional FAS is expanded to generate new subdivision tables and drawing tables, which support the dynamic subdivision and real-time rendering of blocks. Experiment results show that the structures of the improved subdivision table and rendering table can guarantee the dynamic feature of the subdivision and the real-time rendering. Compared with the traditional FAS, the proposed method can ensure the drawing accuracy of 3D surface model, and increase the drawing speed by 28%, which is better in real-time performance than traditional FAS.

Key words: information processing technology, feature-adaptive subdivision, graphic process unit (GPU), subdivision, render

CLC Number: 

  • TP391
[1] Niessner M, Loop C, Meyer M.Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces [J].ACM Transactions on Graphics, 2012, 31(1): 1-11.
[2] Doo D, Sabin M.Behaviour of recursive division surface near extraordinary points[J].Computer-Aided Design, 1978, 10(6): 356-360.
[3] Loop C, Schaefer S.Approximating Catmull-Clark subdivision surfaces with bicubic patches[J].ACM Transactions on Graphics, 2008, 27(1): 1-11.
[4] Stam J.Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[C]∥ Proceedings of SIGGRAPH,New York,NY,USA,1998:395-404.
[5] Niessner M, Loop C, Greiner G.Efficient evaluation of semi-smooth creases in Catmull-Clark subdivision surfaces [C]∥Eurographics Proceedings, Cagliari, 2012:41-44.
[6] Catmull E, Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer-aided Design, 1978, 10(6): 350-355.
[7] Niesser M, Loop C.Analytic displacement mapping using hardware tessellation[J].ACM Transactions on Graphics, 2013, 32(3): 1-9.
[8] Schafer H, Niessner M, Keinert B.State of the art report on real-time rendering with hardware tessellation[C]∥ Eurographics, Strasbourg, France, 2014: 93-117.
[9] 黄韵岑, 冯洁青.表驱动的细分曲面GPU绘制[J].计算机辅助设计与图形学学报,2014,26(10):1567-1575.
Huang Yun-cen, Feng Jie-qing.Mapping driving subdivision surface upon GPU rendering[J].Journal of Computer-Aided Design & Computer Graphics, 2014, 26(10):1567-1575.
[10] Deng C, Ma W.A unified interpolatory subdivision scheme for quadrilateral meshes[J].ACM Transactions on Graphics, 2013, 32(3): 1-10.
[11] 李桂清.细分曲面造型及应用[D].北京:中国科学院计算技术研究所, 2001.
Li Gui-qing.The modeling and application method to subdivision surface[D].Beijing: Institute of Computer Technology, Chinese Academy of Sciences, 2001.
[12] Schafer H,Keinert B, Niessner M.Local painting and deformation of meshes on the GPU[J].Computer Graphics Forum, 2015, 34(1): 26-35.
[13] Yuan Ya-zhen, Wang Rui, Huang Jin.Simplified and tessellated mesh for realtime high quality rendering[J].Computer and Graphics, 2016, 54(10): 135-144.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[10] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[11] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[12] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[13] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[14] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
[15] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .