吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 500-506.doi: 10.13229/j.cnki.jdxbgxb20170238

Previous Articles     Next Articles

Analysis of intensity factors of interface crack in piezoelectric bimaterials

MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai   

  1. College of Mechanical Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2017-08-16 Online:2018-03-01 Published:2018-03-01

Abstract: In order to meet the requirement of commonality and effectiveness in solving the intensity factors of piezoelectric bimaterials with interface crack in practical engineering, based on piezoelectric interface facture mechanics, an explicit extrapolating formula of intensity factors for in-plane and anti-plane interface crack was derived. The interface crack-tip displacement field and electric filed of the piezoelectric bimaterials were simulated using the electromechanical coupling computation methods. Substituting the crack displacement and the electric potential jump at the back of the crack tip into the explicit extrapolating formula, the intensity factors of piezoelectric bimaterials with interface crack were solved. Considering a center interface crack in double piezoelectric plates, the intensity factors under different loadings, different numbers of elements, and different mesh refinement methods were discussed and compared with the analytical solution. Results of numerical examples show that the proposed method has the advantages of simple calculation and high accuracy.

Key words: information processing technology, electromechanical coupling, intensity factors, interfacial crack, piezoelectric biomaterials

CLC Number: 

  • TB115
[1] Govorukha V, Kamlah M, Loboda V, et al. Interface cracks in piezoelectric materials[J]. Smart Materials and Structures, 2016, 25(2): 323-335.
[2] Ou Z C. Singularity parameters ε and κ for interface cracks in transversely isotropic piezoelectricbimaterials[J]. International Journal of Fracture, 2003, 119(2): 41-46.
[3] Ou Z C, Chen Y H. Near-tip stress fields and intensity factors for an interface crack in metal/piezoelectric bimaterials[J]. International Journal of Engineering Science, 2004, 42(13): 1407-1438.
[4] Ou Z C, Chen Y H. Interface crack-tip generalized stress field and stress intensity factors in transversely isotropic piezoelectric bimaterials[J]. Mechanics Research Communications, 2004, 31(4): 421-428.
[5] Nishioka T, Shen S, Yu J. Dynamic J integral, separated dynamic J integral and component separation method for dynamic interfacial cracks in piezoelectric bimaterials[J]. International Journal of Fracture, 2003, 122(3/4): 101-130.
[6] Hu S, Shen S,Nishioka T. Numerical analysis for a crack in piezoelectric material under impact[J]. International Journal of Solids and Structures, 2007, 44(25): 8457-8492.
[7] Shen S,Nishioka T, Kuang Z B. Impact interfacial fracture for piezoelectric ceramic[J]. Mechanics Research Communications, 1999, 26(3): 347-352.
[8] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4): 739-765.
[9] Zhou L M,Meng G W, Li F, et al. A cell-based smoothed XFEM for fracture in piezoelectric materials[J]. Advances in Materials Science and Engineering, 2016, 2016(5): 1-14.
[10] Lei J, Zhang C. Time-domain BEM for transient interfacial crack problems in anisotropic piezoelectric bimaterials[J]. International Journal of Fracture, 2012, 174(2): 163-175.
[11] Ma P, Su R K L, Feng W J, et al. The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials[J]. International Journal for Numerical Methods in Engineering, 2015, 103(2): 94-113.
[12] Fang D, Li F, Liu B, et al. Advances in developing electromechanically coupled computational methods for piezoelectrics/ferroelectrics at multiscale[J]. Applied Mechanics Reviews, 2013, 65(6): 060802.
[13] Zhao Y F, Zhao M H, Pan E, et al. Analysis of an interfacial crack in a piezoelectric bi-material via the extended Green's functions and displacement discontinuity method[J]. International Journal of Solids and Structures, 2014, 51(6): 1456-1463.
[14] Gherrous M, Ferdjani H. Analysis of a Griffith crack at the interface of two piezoelectric materials under anti-plane loading[J]. Continuum Mechanics and Thermodynamics, 2016, 28(6): 1683-1704.
[15] Sladek J, Sladek V, Wünsche M, et al. Analysis of an interface crack between two dissimilar piezoelectric solids[J].Engineering Fracture Mechanics, 2012, 89: 114-127.
[16] Loboda V, Sheveleva A, Lapusta Y. An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial[J]. International Journal of Solids and Structures, 2014, 51(1): 63-73.
[17] Feng F X, Lee K Y, Li Y D. Multiple cracks on the interface between a piezoelectric layer and an orthotropic substrate[J].Acta Mechanica, 2011, 221(3/4): 297-308.
[18] Choi S R, Chung I. Analysis of three collinearantiplane interfacial cracks in dissimilar piezoelectric materials under non-self equilibrated electromechanical loadings on a center crack[J]. Journal of Mechanical Science and Technology, 2013, 27(10): 3097-3101.[19]孟广伟,赵云亮,李锋,等.含多裂纹结构的断裂可靠性分析[J].吉林大学学报:工学版, 2008,38(3):614-618.
Meng Guang-wei, Zhao Yun-liang, Li Feng, et al. Reliability analysis of structures with multi-crack[J].Journal of Jilin University(Engineering and Technology Edition), 2008,38(3):614-618.
[19] 孟广伟,赵云亮,李锋,等.含多裂纹结构的断裂可靠性分析[J].吉林大学学报:工学版, 2008,38(3):614-618.
Meng Guang-wei, Zhao Yun-liang, Li Feng, et al.Reliability analysis of structures with multi-crack[J].Journal of Jilin University(Engineering and Technology Edition), 2008,38(3):614-618.
[20] 彭惠芬,孟广伟,周立明,等.基于小波有限元法的虚拟裂纹闭合法[J].吉林大学学报:工学版, 2011, 41(5):1364-1368.
Peng Hui-fen,Meng Guang-wei, Zhou Li-ming, et al. Virtual crack closure technique based on wavelet finite element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5):1364-1368.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[9] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[10] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[11] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[12] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[13] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[14] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
[15] YANG Chao-yu, LI Ce, LIANG Yin-cheng, YANG Feng. Blurred object detection based on improved particle filter in coal mine underground surveilance [J]. 吉林大学学报(工学版), 2017, 47(6): 1976-1985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .