吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1710-1715.doi: 10.13229/j.cnki.jdxbgxb201406027

Previous Articles     Next Articles

Fatigue life prediction of materials based on BP neural networks optimized by genetic algorithm

YAN Chu-liang, HAO Yun-xiao, LIU Ke-ge   

  1. Beijing Aircraft Strength Institute, Beijing 100083, China
  • Received:2014-07-01 Online:2014-11-01 Published:2014-11-01

Abstract:

The error of traditional fatigue life algorithms of materials is big. To overcome this problem, a model of the relationship among stress concentration factor (Kt), stress average (Sm), stress amplitude (Sa) and median life (N50) was built using BP neural network combined with genetic algorithm. This model is based on the classification of fatigue life data of materials, and it can be used to predict fatigue lift of materials with finite life data. Experiment results show that, using this model the relative prediction error is below 5%, in another word, the prediction accuracy of this model is higher than that of the traditional prediction algorithms. So this model can be applied to prediction the fatigue life of materials.

Key words: fatigue life of materials, BP neural networks, genetic algorithm, fatigue life prediction

CLC Number: 

  • O346.2
[1] 高镇同,熊峻江. 疲劳可靠性[M]. 北京: 北京航空航天大学出版社, 2000.
[2] 闫楚良, 刘克格. 飞机结构经济寿命设计与可靠性评定[M].北京: 航空工业出版社, 2010.
[3] Yan Chu-liang, Liu Ke-ge. Fatigue scatter factor of whole life and reliability of aircraft structure service life[J]. Advanced Materials Research, 2008,44-46:739-744.
[4] Yan Chu-liang, Liu Ke-ge. Theory of active reliability-based design for predetermined life of structures[J]. Advanced Materials Research, 2008,44-46:745-750.
[5] Yan Chu-liang,Liu Ke-ge. Theory of economic life prediction and reliability assessment of aircraft structures[J]. Chinese Journal of Aeronautics,2011,24:164-170.
[6] 闫楚良, 高镇同. 疲劳性能广义S-N曲面[J]. 机械工程学报, 1999, 34(1):103-105. Yan Chu-liang, Gao Zhen-tong. Generalized S-N curved surface of fatigue character[J]. Journal of Mechanical Engineering, 1999, 34(1):103-105(In Chinese).
[7] 李宏双, 吕震宙. 估计疲劳寿命三参数P-S-N曲线的新方法[J]. 机械强度, 2007, 29(2):300-304. Li Hong-shuang, Lyu Zhen-zhou. New method for estimating fatigue life three-parameter P-S-N curves[J]. Journal Mechanical Strength,2007, 29(2):300-304.
[8] 赵永翔 杨冰. 不完善概率疲劳S-N曲线的Monte Carlo修正[J]. 机械工程学报,2011,47(12):170-174. Zhao Yong-xiang, Yang Bing. Monte carlo mondification of imperfect probabilistic fatigue S-N curves[J]. Journal of Mechanical Engineering,2011,47(12):170-174.
[9] 孟广伟, 沙丽蓉, 李锋, 等. 基于径向基函数神经网络响应面法的装载机动臂疲劳可靠性[J]. 吉林大学学报:工学版,2009, 39(6):1516-1520. Meng Guang-wei, Sha Li-rong, Li Feng, et al. Fatigue reliability analysis of loader boom based on RBF-NN response surface method[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(6):1516-1520.
[10] Rodney D Averett, Mary L Realff. Comparative post fatigue residual property predictions of reinforced and unreinforced poly(ethylene terephthalate) fibers using artificial neural networks[J]. Composites Part A: Applied Science and Manufacturing, 2010,41(3):331-344.
[11] 刘仁云, 于繁华, 刘军. 基于小波神经网络的简支梁桥损伤识别[J]. 吉林大学学报:工学版,2009, 39(2):413-416. Liu Ren-yun, Yu Fan-hua, Liu Jun. Damage detection for simply supported based on wavelet neural network[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(2):413-416.
[12] 马锐. 人工神经网络原理[M]. 北京:机械工业出版社, 2010.
[13] 瞿宜锋, 李鸿雁, 刘寒冰, 等. 用遗传算法优化神经网络初始权重的方法[J]. 吉林大学学报:工学版,2003,33(2):45-50. Qu Yi-feng, Li Hong-yan, Liu Han-bing, et al. Method for optimizing initial werghts of ANNs by GAs[J]. Journal of Jilin University(Engineering and Technology Edition),2003,33(2):45-50.
[14] Zhou Nan, Zhang Ji-xiong. Genetic algorithm coupled with the neural network for fatigue properties of welding joints predicting[J]. Journal of Computers,2012,7(8):1887-1894.
[15] 李敏强, 寇纪凇. 遗传算法的基本理论与应用[M]. 北京: 科学技术出版社, 2003.
[16] 李英, 李元春. 基于神经网络和遗传算法的采油控制系统[J]. 吉林大学学报:工学版, 2006,36(1):83-86. Li Ying, Li Yuan-chun. Oil pumping control system based on neural network and genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition),2006,36(1):83-86.
[17] 高镇同. 疲劳性能试验设计和数据处理[M]. 北京: 北京航天航空大学出版社, 1999.
[1] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[2] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
[3] LI Qi-liang, CAO Guan-ning, LI Xuan, YANG Zhi-gang, ZHONG Li-yuan. Multi-parameters aerodynamic optimization of sedan [J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[4] SUN Wen, WANG Qing-nian, WANG Jun-nian. Yaw-moment control of motorized vehicle for energy conservation during cornering [J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[5] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[6] WANG Zhan-zhong, ZHAO Li-ying, CAO Ning-bo. Hazardous material transportation scheduling model based on mutilayer coding genetic algorithm [J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[7] ZHENG Ming, ZHUO Mu-gui, ZHANG Shu-gong, ZHOU You, LIU Gui-xia. Reconstruction for gene regulatory network based on hybrid parallel genetic algorithm and threshold value method [J]. 吉林大学学报(工学版), 2017, 47(2): 624-631.
[8] ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[9] CHEN Jin, LI Song-lin, SUN Zhen-ye, CHEN Gang. Integrated design of aerodynamic and structural performance for wind turbine dedicated airfoil [J]. 吉林大学学报(工学版), 2016, 46(6): 1940-1945.
[10] WEI Li-ying, LI Ming-jun. Bus priority signal timing model considering the influence of traffic guidance [J]. 吉林大学学报(工学版), 2016, 46(3): 777-784.
[11] GAO Ming-liang, YU Sheng-bao, ZHENG Jian-bo, XU Chang, ZHANG Kun, LUAN Hui. Application of PSBP method in high-density two-dimensional resistivity inversion [J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033.
[12] GUO Yu-quan, LI Xiong-fei, LIU Xin. Heuristic genetic algorithm associated with spectral analysis uncovering multi-scale community of complex networks [J]. 吉林大学学报(工学版), 2015, 45(5): 1592-1600.
[13] LIU Lei, YANG Dong. Multi-objective genetic optimization algorithm for SLA-aware service composition problem [J]. 吉林大学学报(工学版), 2015, 45(1): 267-273.
[14] NA Jing-xin, GAO Jian-feng. Top-down design method based on local search and global optimization for cross-sectional size of bus body [J]. 吉林大学学报(工学版), 2014, 44(6): 1564-1570.
[15] WEI Gan, YANG Zhi-gang, LI Qi-liang. Aerodynamic optimization method for car body based on process costing genetic algorithm [J]. 吉林大学学报(工学版), 2014, 44(6): 1578-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!