吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 658-662.doi: 10.13229/j.cnki.jdxbgxb201502048

• Orignal Article • Previous Articles     Next Articles

Distributed fusion and target tracking based on Unscented information filter

YANG Xiao-jun   

  1. School of Information Engineering, Chang'an University, Xi'an 710064, China
  • Received:2013-08-05 Online:2015-04-01 Published:2015-04-01

Abstract: A distributed tracking and fusion algorithm based on Unscented information filter is proposed for nonlinear target tracking in wireless sensor networks. In this algorithm, the unscented transformation is combined with extended information filter to handle the nonlinearity of the target motion and measurement in the framework of information filtering. The Kalman consensus filter is used as distributed fusion structure to combine the estimate of each local sensor node in the sensor networks with constrained topology and limited bandwidth. The efficiency and the superiority of the proposed algorithm are demonstrated by simulation results.

Key words: information processing technology, sensor networks, distributed estimation, Unscented transformation

CLC Number: 

  • TN911.23
[1] Yao K. Sensor networking: concepts, applications and challenges[J]. Acta Automatica Sinica, 2006, 32(6): 839-845.
[2] Chong C Y, Kumar S P. Sensor networks: evolution, opportunities and challenges[J]. Proceedings of the IEEE, 2003, 91(8): 1247-1256.
[3] Sayeed A, Estrin D, Pottie G, et al. Special issue on self-organizing distributed collaborative sensor networks[J]. IEEE Journal of Selected Areas on Communication, 2005, 23(4): 689-872.
[4] Vercauteren T, Wang X. Decentralized sigma-point information filters for target tracking in collaborative sensor networks[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2997-3009.
[5] Liu G, Worgotter F, Markelic I. Square-root Sigma-point information filtering[J]. IEEE Transactions on Automatic Control, 2012, 57(11): 2945-2950.

[6] Noori M, Ardakani M. Energy efficiency of universal decentralized estimation in random sensor networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(12):4023-4028.
[7] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters[J]. IEEE Transactions on Signal Processing, 2012, 60(2):545-555.
[8] 石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用[J]. 自动化学报, 2011, 38(6):431-437.
Shi Yong,Han Chong-zhao. Adaptive UKF method with applications to target tracking[J]. Acta Automatica Sinica, 2011, 38(6):431-437.
[9] Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering[J]. IEEE Signal Processing Letters, 2008, 15:861-864.
[10] Khan U A, Moura J M F. Distributing the Kalman filter for large-scale systems[J]. IEEE Transactions on Signal Processing, 2008, 56(10):4919-4935.
[11] Cattivelli F S, Sayed A H. Diffusion strategies for distributed Kalman filtering and smoothing[J]. IEEE Transactions on Automatic Control, 2010, 55(9):2069-2084.
[12] Olfati-Saber R. Kalman-consensus filter: Optimality, stability and performance[C]∥Proceedings of IEEE Conference on Decision and Control. Shanghai: IEEE, 2009: 7036-7042.
[13] Olfati-Saber R, Fax R, Murray R. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1):215-233.
[14] 王帅, 杨文, 侍洪波. 带丢包一致性滤波算法研究[J]. 自动化学报, 2010, 36(12):1689-1696.
Wang Shuai,Yang Wen,Shi Hong-bo. Consensus-based filtering algorithm with packet-dropping[J]. Acta Automatica Sinica, 2010, 36(12):1689-1696.
[15] 王林, 张国忠, 朱华勇, 等. 面向移动传感器网络的自适应一致性融合估计方法[J]. 上海交通大学学报, 2011, 45(3):121-129.
Wang Lin, Zhang Guo-zhong, Zhu Hua-yong, et al. Adaptive consensus fusion estimation for mobile sensor networks[J]. Journal of Shanghai Jiaotong University, 2011, 45(3):121-129.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[5] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[6] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[7] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[8] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[9] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[10] LIU Zhou-zhou, PENG Han. Topology control algorithm based on node reliability in WSN [J]. 吉林大学学报(工学版), 2018, 48(2): 571-577.
[11] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[12] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[13] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[14] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[15] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!