吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1869-1873.doi: 10.13229/j.cnki.jdxbgxb201506021

Previous Articles     Next Articles

Effect of different solutions on the wettability of lotus leaves

YANG Zhuo-juan1, WANG Qing-cheng1, GAO Ying2, MEN Yu-zhuo2, YANG Xiao-dong2   

  1. 1.College of Mechanical Engineering,Jilin Teachers'Institute of Engineering and Technology, Changchun 130052,China;
    2.Faculty of Science,Changchun Institute of Technology, Changchun 130021,China
  • Received:2014-03-04 Online:2015-11-01 Published:2015-11-01

Abstract: The change of the wettabilitys of lotus leaves after been soaked in different solutions, acid(H2SO4),alkali (NaOH), ethanol(C2H5OH) and acetone(C3H6O),with different pH values and soaking times was investigated. The results show that pH value and soaking time have little influence on the water contact angle on the lotus leaves. The lotus leaf samples before and after the experiments were observed using scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM-FEG). We find that there are no obvious changes of the surface morphology and wax crystal of the lotus leaf. Chemical composition analysis of the lotus leaves demonstrates that the inert reaction between acid-base solution and cuticular wax is the main reason of un-wettability for the lotus leaves. The main reason for the rapid loss of the superhydrophobic property of the lotus leaf samples after being soaked in ethanol and acetone solutions is that the surface morphology and cuticular wax are changed due to the high combining ability of alcohols and ketones with cuticular wax.

Key words: engineering bionics, wettability, lotus leaves, acid solution, alkali solution, ethanol solution, acetone solution

CLC Number: 

  • Q94
[1] Barthlott W, Neinhuis C. The purity of sacred lotus or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8.
[2] Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials[J]. Philos Trans A Math Phys Eng Sci,2009,367(1893):1487-1509.
[3] Namavar F, Cheung C L, Sabirianov R F, et al. Lotus effect in engineered zirconia[J]. Nano Lett,2008,8(4):988-996.
[4] Liu Y Y, Chen X Q, Xin J H. Can superhydrophobic surfaces repel hot water?[J]. Journal of Materials Chemistry,2009,19(31):5602-5611.
[5] 赵小亮,王智民,马小军,等. 荷叶化学成分研究[J]. 中国中药杂志,2013,38(5):703-708.
Zhao Xiao-liang,Wang Zhi-min,Ma Xiao-jun,et al. Chemical constituents from leaves of Nelumbo nucifera[J]. China Journal of Chinese Materia Medica, 2013,38(5):703-708.
[6] Koch K, Dommisse A, Barthlott W. Chemistry and crystal growth of plant wax tubules of lotus (Nelumbo nucifera) and nasturtium (Tropaeolum majus) leaves on technical substrates[J]. Crystal Growth & Design,2006,6(11):2571-2578.
[7] Bhushan B. Biomimetics: lessons from nature-an overview[J]. Philos Trans A Math Phys Eng Sci,2009,367(1893):1445-1486.
[8] 郑黎俊,乌学东,楼增,等. 表面微细结构制备超疏水表面[J]. 科学通报,2004,49(17):1691-1699.
Zheng Li-jun,Wu Xue-dong,Lou Zeng,et al. The preparation of superhydrophobic surface with surface micro-structure[J]. Chinese Science Bulletin,2004,49(17):1691-1699.
[1] XI Peng,CONG Qian,WANG Qing-bo,GUO Hua-xi. Wear test and anti-friction mechanism analysis of bionic stripe grinding roll [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1787-1792.
[2] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[3] QIAN Zhi-hui, ZHOU Liang, REN Lei, REN Lu-quan. Completely passive walking machine with bionic subtalar joint and matatarsal phalangeal joint [J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[4] GE Chang-jiang, YE Hui, HU Xing-jun, YU Zheng-lei. Prediction and control of trailing edge noise on owl wings [J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[5] LI Meng, SU Yi-nao, SUN You-hong, GAO Ke. High matrix bionic abnormal shape impregnated diamond bit [J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[6] LIANG Yun-hong, REN Lu-quan. Preliminary study of habitat and its bionics [J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[7] LIANG Yun-hong, REN Lu-quan. Preliminary study of bionics in human life [J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[8] ZOU Meng, YU Yong-jun, ZHANG Rong-rong, WEI Can-gang, WANG Hui-xia. Simulation analysis of energy-absorption properties of thin-wall tube based on horn structure [J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
[9] QIAN Zhi-hui, MIAO Huai-bin, REN Lei, REN Lu-quan. Lower limb joint angles of German shepherd dog during foot-ground contact in different gait patterns [J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[10] TIAN Wei-jun, WANG Ji-yue1, LI Ming1, CHEN Si-yuan, LIU Fang-yuan, CONG Qian. Bionic design of the small blade of horizontal axis wind turbines [J]. 吉林大学学报(工学版), 2015, 45(5): 1495-1501.
[11] TIAN Gui-zhong, LIU Zhi-ling, ZHOU Hong-gen, SONG Jiang-chao, ZHU Tao. Quasi-static axial tensile mechanical characteristics of silkworm's anterior silk gland [J]. 吉林大学学报(工学版), 2015, 45(3): 872-877.
[12] LI Fang, ZHAO Gang, LIU Wei-xin, SUN Zhuang-zhi. Numerical simulation of drag reduction characteristics of a bionic jet surface with multiple holes [J]. 吉林大学学报(工学版), 2014, 44(6): 1698-1703.
[13] QIAN Zhi-hui, MIAO Huai-bin, Shang Zhen, REN Lu-quan. Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits [J]. 吉林大学学报(工学版), 2014, 44(6): 1692-1697.
[14] WANG Ji-yue, CONG Qian, QI Xin,ZHANG Yan. Optimum structural design and analysis of drag reduction mechanism of bionic needles inspired by cicada stylet [J]. 吉林大学学报(工学版), 2014, 44(3): 696-700.
[15] GE Chang-jiang, GE Mei-chen, LIANG Ping, ZHANG Zhi-hui, REN Lu-quan. High-lift effect of bionic slat [J]. 吉林大学学报(工学版), 2014, 44(2): 387-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!