吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 998-1004.doi: 10.13229/j.cnki.jdxbgxb201503046

Previous Articles     Next Articles

Weighted neighbor-region based multi-level fuzzy edge detection method

ZHANG Wen-jie1, XIONG Qing-yu2, SHI Wei-ren1, CHEN Shu-han1   

  1. 1.College of Automation, Chongqing University, Chongqing 400030, China;
    2.The School of Software Engineering, Chongqing University, Chongqing 401331, China
  • Received:2013-10-23 Online:2015-05-01 Published:2015-05-01

Abstract: Most existing edge detection methods can not perform well in low contrast image and noise images. Combing the advantages of differential operator and fuzzy edge detection, a novel multi-level fuzzy edge detection method based on weighted neighbor-region is proposed. First, this method computes the image gradient features, and utilizes the adaptive method to divide image into multiple tiers based on gradient. Then, a fuzzy function is constructed to strengthen different image gradient features in different levels. Experiment results show that the proposed approach can highlight the gradient features in low contrast region of an image with the help of strengthening. Also this approach outperforms the state-of-art methods in terms of both visual quality and noise (Salt and Pepper noise and Gaussian noise) suppression.

Key words: information processing, edge detection, weighted neighbor-region, stratified fuzzy enhancement

CLC Number: 

  • TN911.73
[1] 陈超. MATLAB应用实例精讲:图像处理与GUI设计篇[M]. 北京:电子工业出版社,2011:179-188.
[2] Reza-Alikhani H, Naghsh A, Jalali-Varnamkhasti R. Edge detection of digital images using a conducted ant colony optimization and intelligent thresholding[C]∥Proceedings of 2013 First Iranian Conference on Pattern Recognition and Image Analysis, Birjand,2013:1-6.
[3] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(6):679-698.
[4] Abid S, Fnaiech F, Ben Braiek E. A novel neural network approach for image edge detection[C]∥Proceedings of 2013 International Conference on Electrical Engineering and Software Applications, Hammamet,Algeria,2013:1-6.
[5] Zhang Jin-ping,Lian Yong-xiang,Dong Lin-fu,et al. A new method of fuzzy edge detection based on Gauss function[C]∥Proceedings of the 2nd International Conference on Computer and Automation Engineering,Singapore,2010:559-562.
[6] Pal S K, King R A. On edge detection of X-ray images using fuzzy sets[J]. Pattern Analysis and Machine Intelligence,1983(1):69-77.
[7] 陈大伟,刘海龙,李金屏. 复杂静态背景下多移动目标实时检测系统的FPGA实现[J]. 吉林大学学报:工学版,2013,43(增刊1):287-290.
Chen Da-wei, Liu Hai-long, Li Jin-ping. FPGA implementation of real-time detection system of moving objects in complicated static background[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(Sup.1):287-290.
[8] Chiang M L,Lau S H. Automatic multiple faces tracking and detection using improved edge detector algorithm[C]∥Proceedings of 2011 7th International Conference on Information Technology in Asia, Kuching, Sarawak,2011:1-5.
[9] Huang J,You X G,Tang Y Y,et al. A novel iris segmentation using radial-suppression edge detection[J]. Signal Processing,2009,89(12):2630-2643.
[10] 冯珂,朱敏,钟煜,等. 一种改进的canny边缘检测AGT算法[J]. 计算机应用与软件,2012,29(3):265-267.
Feng Ke, Zhu Min,Zhong Yu, et.al. An improved canny edge detection AGT algorithm[J]. Computer Applications and Software,2012, 29(3):265-267.
[11] Zhao Hui-li,Qin Guo-feng,Wang Xing-jian. Improvement of canny algorithm based on pavement edge detection[C]∥Proceedings of 2010 3rd International Congress on Image and Signal Processing,Yantai,China,2010:964-967.
[12] 曲智国,王平,高颖慧,等. 基于开关式周围抑制的轮廓检测方法[J]. 吉林大学学报:工学版,2012,42(6):1602-1607.
Qu Zhi-guo,Wang Ping,Gao Ying-hui,et al. Contour detection based on switching surround suppression[J]. Journal of Jilin University (Engineering and Technology Edition),2012,42(6):1602-1607.
[13] 杨勇,黄淑英. 一种改进的Pal和King模糊边缘检测[J]. 仪器仪表学报,2008,9(9):1918-1923.
Yang Yong, Huang Shu-ying. A modified Pal and King algorithm for fuzzy edge detection[J]. Chinese Journal of Scientific Instrument,2008,9(9):1918-1923.
[14] Zhang Jin-ping,Lian Yong-xiang,Dong Lin-fu,et al. A new method of fuzzy edge detection based on gauss function[C]∥2010 the 2nd International Conference on Computer and Automation Engineering,Singapore,2010:559-562.
[15] 洪文松,陈武凡. 实现图像边缘检测的改进广义模糊算子法[J]. 中国图象图形学报,1999,2(4):143-147.
Hong Wen-song,Chen Wu-fan. An improved GFO (Generalized fuzzy operator) algorithm for high quality edge-detection of images[J]. China Journal of Image and Graphics,1999,2(4):143-147.
[16] Zhou Ji-hong,Lu Jun,Ling Xian-qing. An adaptive fuzzy entropy algorithm in image edge detection[C]∥Proceedings of 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control,Harbin,China,2012:371-374.
[17] Ma Wei-feng,Deng Cai-xia. An improved wavelet multi-scale edge detection algorithm[C]∥Proceedings of 2012 International Conference on Wavelet Analysis and Pattern Recognition,Xi'an,China,2012:302-306.
[18] Dun L, Dong Y. A multi-scale edge detection algorithm based on wavelet transform[C]∥Proceedings of 2012 Fifth International Conference on Intelligent Networks and Intelligent Systems,Tianjin,China,2012:21-24.
[19] 冈萨雷斯,伍兹,埃丁斯,等. 数字图像处理: MATLA版[M]. 北京:电子工业出版社, 2005:280-295.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!