吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1197-1201.doi: 10.13229/j.cnki.jdxbgxb201604027

• Orginal Article • Previous Articles     Next Articles

Flow stress behavior of in situ particulate reinforced titanium atrix composite at elevated temperature

LIU Li-ping1, 2, LIU Yong-bing1, JI Lian-feng1, CAO Zhan-yi1, YANG Xiao-hong1   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    2.Department of Engineering and Technology, Changchun Vocational Institute of Technology, Changchun 130033, China
  • Received:2015-08-17 Online:2016-07-20 Published:2016-07-20

Abstract: The flow stress behavior of an in situ synthesized TiB and TiC reinforced Ti matrix composite was studied by isothermal hot compression tests with temperature ranging from 550 ℃ to 750 ℃ and strain rate from 0.0001 s-1 to 0.0004 s-1. Results show that the flow stress decreases with the increase in temperature, and increases with the increase in strain rate. The softening mechanism during the hot deformation is mainly determined by dynamic recovery with the support of dynamic recrystallization. The constitutive parameters of the composite were calculated on the basis of Arrhenius model and Zener-Hollomon parameter, and the constitutive equation in hyperbolic form was established.

Key words: composite materials, constitutive equation, hot compression test, flow stress behavior

CLC Number: 

  • TG115
[1] Tjong S C, Mai Y W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008, 68(3-4): 583-601.
[2] Morsi K, Patel V V. Processing and properties of titanium-titanium boride (TiBw) matrix composites-a review[J]. Journal of Materials Science, 2007, 42(6): 2037-2047.
[3] Xiao L, Lu W J, Qin J N. Steady state creep of in situ TiB plus La 2 O 3 reinforced high temperature titanium matrix composite[J]. Materials Science and Engineering A, 2009, 499(1-2): 500-506.
[4] Das M, Bhattacharya K, Dittrick S A, et al. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 259-271.
[5] Shu Shi-li, Xing Bin, Qiu Feng, et al. Comparative study of the compression properties of TiAl matrix composites reinforced with nano-TiB 2 and nano-Ti 5 Si 3 particles[J]. Materials Science and Engineering A, 2013, 560(10): 596-600.
[6] Geng L, Ni D R, Zhang J. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites[J]. Journal of Alloy and Compounds, 2008, 463(1-2): 488-492.
[7] Qi J Q, Wang H W, Zou C M. Influence of matrix characteristics on tensile properties of in situ synthesized TiC/TA15 composite[J]. Materials Science and Engineering A, 2012, 553: 59-66.
[8] 李志杰,彭燕,刘宏民,等. 中碳钢温变形过程的流变应力[J]. 吉林大学学报:工学版,2013,43(5):1320-1324.
Li Zhi-jie, Peng Yan, Liu Hong-min, et al. Flow stress of medium carbon steel under warm compression deformation[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(5): 1320-1324.
[9] Jonas J J, Sellars C M. Tegart W J McG. Strength and structure under hot-working conditions[J]. Int Metal Rev, 1969,14(1):1-24.
[10] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Met, 1966,14(9):1136-1138.
[11] Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Mater Sci Eng A, 2009,500(1-2):114-121.
[12] Phaniraj C, Samantaray D, Mandal S, et al. A new relationship between the stress multipliers of Garofalo equation for constitutive analysis of hot deformation in modified 9Cr-1Mo (P91) steel[J]. Mater Sci Eng A, 2011, 528(18):6066-6071.
[13] Zener C, Hollomon H. Effect of strain-rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[14] Jia W J, Zeng W D, Liu J R. Influence of thermal exposure on the tensile properties and microstructures of Ti60 titanium alloy[J]. Materials Science and Engineering A, 2011, 530: 511-518.
[15] Flower H M. Microstructural development in relation to hot working of titanium alloys[J]. Materials Science and Technology, 1990, 6(11): 1082-1092.
[1] GUAN Qing-feng,ZHANG Fu-tao,PENG Tao,LYU Peng,LI Yao-jun,XU Liang,DING Zuo-jun. Hot deformation behavior of 9%Cr steel contained B and Co elements [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1799-1805.
[2] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[3] YAN Guang, HAN Xiao-jin, YAN Chu-liang,ZHU Lian-qing. Buckling analysis of composite cylindrical shell with cover under axial compressive load [J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[4] ZHUANG Wei-min, CAO De-chuang, YE Hui. Prediction of FLD for AA7075 under hot stamping based on continuum damage mechanics [J]. 吉林大学学报(工学版), 2014, 44(2): 409-414.
[5] JIA Hong-lei, WANG Yue-ming, ZHANG Zhi-jun, SUN Ji-yu. One-dimensional differential constitutive equation and viscoelastic model of elytra of the dung beetle (Copris ochus Motschulsky) [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 433-436.
[6] LU Guang-lin, QIU Xiao-ming, BAI Yang, LUN Xin-jie|DENG Bao-qing,REN Lu-qu. Microstructure and performance of c-BN bionic wearresistant composites [J]. 吉林大学学报(工学版), 2011, 41(01): 73-0077.
[7] SUN Liang,WANG Jun,HAN Ping-chou . Electrospinned PCL nanofiber and its diameter measurement correction [J]. 吉林大学学报(工学版), 2008, 38(06): 1305-1309.
[8] ZHANG Xiao-ming, WANG Hong-yan, LI Jun-feng . Preparation of bone repair material of modified-MWNTs/nano-HA/PLA
[J]. 吉林大学学报(工学版), 2008, 38(04): 844-847.
[9] Li Hong-ji, He Ran, Zhang Wan-xi, Sun Guo-en, Zhang Li, Niu Yong-sheng . Preparation and properties of nanoTiO2/EVA composites [J]. 吉林大学学报(工学版), 2006, 36(05): 710-0714.
[10] SUN Guoen, ZHANG Li, LI Hongji, ZHANG Chunling, LIANG Jicai, ZHANG Wanxi. Structure and Properties of EVA/Al2O3 Nanocomposite Materials [J]. 吉林大学学报(工学版), 2005, 35(06): 577-0581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .