吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1153-1160.doi: 10.13229/j.cnki.jdxbgxb20170494

Previous Articles     Next Articles

Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests

CHEN Jun-fu1,2, GUAN Zhi-ping1,2, YANG Chang-hai3, NIU Xiao-ling1,2, JIANG Zhen-tao1,2, Song Yu-quan1,2   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022,China;
    2.Superplastic & Plastic Research Institute, Jilin University, Changchun 130022,China;
    3.College of Automotive Engineering, Jilin University, Changchun 130022,China
  • Received:2017-04-22 Online:2018-07-01 Published:2018-07-01

Abstract: Three kinds of metal rods with different ductility were used to study the strain ranges and mechanical properties of metal under different stress states by tension and torsion tests. The Bridgman method was used to measure the hardening curve from the beginning of necking to the final fracture. Comparison and analysis of the two test results show that the uniform strain ranges of the metal rod in the torsion state are larger than those in the tension state because of the difference of mechanical stability. Due to the difference of the fracture mechanism under different stress states, the strain ranges before fracture of metal in torsion test are larger than those in tension test. So the total strain ranges measured in torsion test are larger than those in tension test with Bridgman method. The Bridgman method has limitations, which is only applicable to metals with large ductility and weak hardening ability, while, torsion test is versatile and suitable for metal with different properties. Comparing with the tension or compression state, the metal rod exhibits different degrees of “softening phenomenon” in the torsion state, that is, the metal is more likely to reach plastic yield in the torsion state, and the hardening ability and the ultimate bearing capacity are obviously weakened.

Key words: materials synthesis and processing technology, hardening curve, tension and torsion, strain, necking

CLC Number: 

  • TG301
[1] Nadai A.Theory of Flow and Fracture of Solids II[M]. New York:Mcgraw-Hill Book Company, 1950:347-352.
[2] Bridgman P W.Studies in Large Plastic Flow and Fracture[M]. New York: McGraw-Hill Book Company, 1952:9-37.
[3] Yu J H, Mcwilliams B A, Kaste R P.Digital image correlation analysis and numerical simulation of aluminum alloys under quasi-static tension after necking using the bridgman's correction method[J]. Experimental Techniques, 2016, 40(5):1-9.
[4] Tsuchida N, Inoue T, Enami K.Estimations of the true stress and true strain until just before fracture by the stepwise tensile test and bridgman equation for various metals and alloys[J]. Journal of the Japan Institute of Metals, 2012, 76(10):579-586.
[5] Grytten F, Daiyan H, Polanco-Loria M, et al.Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics[J]. Polymer Testing, 2009, 28(6):653-660.
[6] Zhu F, Bai P, Zhang J, et al.Measurement of true stress-strain curves and evolution of plastic zone of low carbon steel under uniaxial tension using digital image correlation[J]. Optics & Lasers in Engineering, 2015, 65:81-88.
[7] Reis L C, Oliveira M C, Santos A D, et al.On the determination of the work hardening curve using the bulge test[J]. International Journal of Mechanical Sciences, 2016, 105:158-181.
[8] 陈辉,蔡力勋,包陈. 基于小圆环试样获取金属材料单轴本构关系的FAT方法[J]. 应用数学和力学, 2014(增刊1):136-140.
Chen Hui, Cai Li-xun, Bao Chen.FAT method based on ring compression test to obtain uniaxial constitutive relationship for metals[J]. Applied Mathematics and Mechanics, 2014(Sup.1):136-140.
[9] Yogo Y, Sawamura M, Hosoya M, et al.Measurement method for stress-strain curve in a super-large strain range[J]. Materials Science & Engineering A, 2014, 600(4):82-89.
[10] 谢子令,武晓雷,谢季佳,等. 高压扭转铜试样的微观组织与压缩性能[J]. 金属学报, 2008, 44(7):803-809.
Xie Zi-ling, Wu Xiao-lei, Xie Ji-jia, et al.Microstructures and compression properties of copper specimens deformed by high-pressure torsion[J]. Acta Metallurgica Sinica, 2008,44(7):803-809.
[11] Joun M S, Eom J G, Min C L.A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method[J]. Mechanics of Materials, 2008, 40(7):586-593.
[12] Zhao K, Wang L, Chang Y, et al.Identification of post-necking stress-strain curve for sheet metals by inverse method[J]. Mechanics of Materials, 2016, 92:107-118.
[13] GB/T 228-2002. 金属材料室温拉伸试验方法[S].
[14] GB/T5028-2008. 金属材料薄板和薄带拉伸应变硬化指数(n值)的测定[S].
[15] GB/T 10128-2007,金属材料室温扭转试验方法[S].
[16] 管志平,马品奎,宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013,49(8):1003-1011.
Guan Zhi-ping, Ma Pin-kui, Song Yu-quan.Analysis of fracture during superplastic tension[J]. Acta Metallurgica Sinica,2013,49(8):1003-1011.
[17] 姜薇,李亚智,苏杰,等. 2024-T3铝合金拉伸及剪切断裂行为[J]. 固体火箭技术, 2015(3):426-432.
Jiang Wei, Li Ya-zhi, Su Jie, et al.Tensile and shear failure mechanisms of2024-T3 aluminum alloy[J]. Journal of Solid Rocket Technology, 2015(3):426-432.
[18] Dieter G E.Mechanical Metallurgy[M]. 3rd ed. Beijing :Tsinghua University Press,2006:344-346.
[19] 赵慧娟,庄茁,郑泉水. 大变形扭转塑性硬化的实验和仿真研究[J]. 力学学报, 2002, 34(5):804-811.
Zhao Hui-juan, Zhuang Zhuo, Zheng Quan-shui.Test and simulation for large deformed torsion and plastic hardening[J]. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(5):804-811.
[20] Graham S M, Zhang T, Gao X, et al.Development of a combined tension-torsion experiment for calibration of ductile fracture models under conditions of low triaxiality[J]. International Journal of Mechanical Sciences, 2012, 54(1):172-181.
[21] Corrêa E C S, Aguilar M T P, Monteiro W A, et al. Work hardening behavior of prestrained steel in tensile and torsion tests[J]. Journal of Materials Science Letters, 2000, 19(9):779-781.
[22] El-Danaf E, Kalidindi S R, Doherty R D.Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals[J]. International Journal of Plasticity, 2001, 17(9):1245-1265.
[23] 孙朝阳,郭祥如,郭宁,等. 耦合孪生的TWIP钢多晶体塑性变形行为研究[J]. 金属学报, 2015, 51(12):1507-1515.
Sun Chao-yang, Guo Xiang-ru, Guo Ning, et al.Investigation of plastic deformation behavior on coupling twinning of polycrystal TWIP steel[J]. Acta Metallurgica Sinica,2015, 51(12):1507-1515.
[1] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[2] ZHONG Wei, JUAN Zhi-cai, SUN Bao-feng. Hierarchical hub location model for integration of urban and rural public transport in an incomplete network [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1387-1397.
[3] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[4] XIA Li-hong, DENG Zhao-xiang. Optimal design of electromechanical brake actuator through an integrated mechatronic approach [J]. 吉林大学学报(工学版), 2018, 48(4): 998-1007.
[5] SUN Xiu-rong, DONG Shi-min, WANG Hong-bo, LI Wei-cheng, SUN Liang. Comparison of multistage simulation models of entire sucker rod with spatial buckling in tubing [J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[6] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[7] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[8] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[9] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[10] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[11] XING Hai-yan, GE Hua, LI Si-qi, YANG Wen-guang, SUN Xiao-jun. Hidden defect metal magnetic memory identification for welded joints based on fuzzy membership and maximum likelihood estimation [J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[12] GU Xiao-yan, LIU Ya-jun, SUN Da-qian, XU Feng, MENG Ling-shan, GAO Shuai. Microstructures and mechanical properties of transient liquid phase diffusion bonded S355 steel/6005A aluminum alloy joint [J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[13] LI Wen-hui, SUN Ming-yu, XU Guang-xing, CAO Chun-hong. Identification and process of under- and over-constrained geometric constraint systems based on bipartite graph model [J]. 吉林大学学报(工学版), 2017, 47(5): 1583-1590.
[14] GU Zheng-wei, ZHANG Wen-xue, LYU Meng-meng, WANG Wei, XU Hong, LI Xin. Stretch bending defect control of U-section stainless steel profile with wide flange [J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[15] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PENG Qi-yuan,XU Jin,ZHENG Sheng-bao,SHAO Yi-ming,DENG Tian-min. Effect of road pavement material change at tunnel entrance and exit on vehicle operation and optimization of transition location[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[2] WANG Xin,JIANG Ji-hai. Regenerative braking control strategy for wheel drive hydraulic hybrid vehicle[J]. 吉林大学学报(工学版), 2009, 39(06): 1544 -1549 .
[3] WU Jian,DONG Hui-juan,ZHANG Song-bai,ZHANG Guang-yu. Novel primary series matching scheme for piezoelectric ultrasonic transducer[J]. 吉林大学学报(工学版), 2009, 39(06): 1641 -1645 .
[4] ZHENG Wen-Zhong, WAN Fu-Xiong, LI Shi-Guang. Mechanical performance of reinforced concrete slabs strengthened with CFRP sheets bonded with an inorganic adhesive after fire[J]. 吉林大学学报(工学版), 2010, 40(05): 1244 -1249 .
[5] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[6] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[7] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[8] ZHU Jian-feng, LIN Yi, CHEN Xiao-kai, SHI Guo-biao. Structural topology optimization based design of automotive transmission housing structure[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[9] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[10] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .