Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1509-1520.doi: 10.13229/j.cnki.jdxbgxb20180433

Previous Articles    

Mechanical properties of laminated slab with shear keys

Ming LI(),Hao-ran WANG,Wei-jian ZHAO   

  1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • Received:2018-05-04 Online:2019-09-01 Published:2019-09-11

Abstract:

In order to study the mechanical properties of laminated slab with shear keys, the necessity of setting shear keys was analyzed based on the experiment and finite element simulation method by comparing the load-deflection curves of the laminated slabs with different number of shear keys. The stress characteristics of the laminated slabs were analyzed by comparing the loading process of the laminated slab with shear keys and the cast-in-place slab. The damage process and the shear force distribution law of the shear keys were analyzed respectively by extracting the shear force of the shear keys, and the simplified calculation equation for the shear force was established. The results show that the shear keys can significantly improve the stiffness and the bearing capacity of the laminated slab. Compared with the cast-in-place slab, when the concrete at the bottom of the laminated slab is cracked and the steel bar is yielded, a significant difference exists in the distribution law of the first principal stress of the concrete at the bottom of the slab, while a similarity occurs in the stress distribution law of the steel bars and the displacement distribution law at the bottom of the slab. With the increase in the load, the shear force of each shear key in the laminated slab increases linearly and then drops suddenly. The shear force of the shear key is bigger as the shear key gets closer to the bearing. At last, the layout method of shear keys is put forward.

Key words: civil engineering, laminated slab, shear key, mechanical properties, distribution law

CLC Number: 

  • TU375.2

Fig.1

Loading system of experiment"

Fig.2

Precast baseplate with shear keys"

Fig.3

Comparison of load-deflection curves among simulation and experiment results"

Fig.4

Comparison of load-steel bar strain curves among simulation and experiment results"

Fig.5

Comparison of mid-deformation diagram among simulation and experiment results"

Table 1

Arrangement of shear keys and parameter information in the laminated slabs"

编号 抗剪键

现浇层

强度等级

预制底板

强度等级

现浇板

强度等级

钢筋

强度等级

有/无 形状 行数 列数 行间距/mm 列间距/mm 强度等级
DH1 - - - - - - C25 C25 - HRB335
DH2 正方体 2 2 2250 900 C30 C25 C25 - HRB335
DH3 正方体 4 4 300 750 C30 C25 C25 - HRB335
DH4 正方体 4 8 300 320 C30 C25 C25 - HRB335
DH5 正方体 4 10 300 120 C30 C25 C25 - HRB335
XJ1 - - - - - - - - - C25 HRB335

Fig.6

Comparison among load-deformation curves of slabs"

Fig. 7

Comparison of mid-deformation diagram among slabs"

Fig.8

Load-deformation curves of cast-in-place slab and laminated one"

Fig.9

Stress and displacement nephogram of cast-in-place slab and laminated one when concrete is cracked"

Fig.10

Stress and displacement nephogram of cast-in-place slab and laminated one when steel is yield"

Fig.11

Schematic diagram of shear stress direction of element"

Fig.12

Shear keys number in 1/4 area of thelaminated slab(DH4)"

Fig.13

Load-shear curves of each shear key of laminated slab(DH4)"

Fig.14

Load-shear curves of each shear key of laminated slab(DH4-1)"

Fig.15

Load-shear curves of each shear key of laminated slab(DH4-2)"

Table 2

Parameter information and simulation results of laminated slabs"

叠合板编号 抗剪键

现浇层

强度等级

钢筋

强度等级

叠合板厚度/mm dki /m Vki/kN

V max ki

/kN

R 1 R 2
编号 行间距/mm 列间距/mm

强度

等级

DH4 K1 300 320 C30 C25 HRB335 100 0.08 -3.74 -6.05 3.31 1.00
K2 300 320 C30 C25 HRB335 100 0.40 -2.35 -3.21 2.08 0.53
K3 300 320 C30 C25 HRB335 100 0.72 -1.53 -1.68 1.35 0.28
K4 300 320 C30 C25 HRB335 100 1.04 -1.13 -1.13 1.00 0.17
DH4-1 K1 300 250 C30 C25 HRB335 100 0.08 -3.54 -5.89 3.51 1.00
K2 300 250 C30 C25 HRB335 100 0.33 -2.45 -3.66 2.43 0.61
K3 300 250 C30 C25 HRB335 100 0.58 -2.06 -2.75 2.04 0.47
K4 300 250 C30 C25 HRB335 100 0.83 -1.35 -1.55 1.34 0.26
K5 300 250 C30 C25 HRB335 100 1.08 -1.01 -1.01 1.00 0.17
DH4-2 K1 300 450 C30 C25 HRB335 100 0.08 -3.98 -6.33 2.97 1.00
K2 300 450 C30 C25 HRB335 100 0.53 -2.38 -2.83 1.78 0.45
K3 300 450 C30 C25 HRB335 100 0.98 -1.34 -1.34 1.00 0.21
DH6 K1 900 320 C30 C25 HRB335 100 0.08 -4.01 -6.29 3.31 1.00
K2 900 320 C30 C25 HRB335 100 0.40 -2.51 -3.39 2.07 0.52
K3 900 320 C30 C25 HRB335 100 0.72 -1.62 -1.77 1.34 0.28
K4 900 320 C30 C25 HRB335 100 1.04 -1.21 -1.21 1.00 0.18
DH7 K1 180 320 C30 C25 HRB335 100 0.08 -3.58 -5.92 3.31 1.00
K2 180 320 C30 C25 HRB335 100 0.40 -2.24 -3.08 2.07 0.52
K3 180 320 C30 C25 HRB335 100 0.72 -1.47 -1.59 1.36 0.27
K4 180 320 C30 C25 HRB335 100 1.04 -1.08 -1.08 1.00 0.18
DH8 K1 300 320 C30 C25 HRB335 120 0.08 -3.11 -5.62 3.32 1.00
K2 300 320 C30 C25 HRB335 120 0.40 -1.92 -2.97 2.07 0.52
K3 300 320 C30 C25 HRB335 120 0.72 -1.33 -1.52 1.36 0.27
K4 300 320 C30 C25 HRB335 120 1.04 -0.98 -0.98 1.00 0.18
DH9 K1 300 320 C30 C25 HRB335 140 0.08 -3.07 -5.34 3.31 1.00
K2 300 320 C30 C25 HRB335 140 0.40 -1.93 -2.79 2.09 0.52
K3 300 320 C30 C25 HRB335 140 0.72 -1.24 -1.13 1.35 0.28
K4 300 320 C30 C25 HRB335 140 1.04 -0.92 -0.92 1.00 0.17
DH10 K1 300 320 C20 C25 HRB335 100 0.08 -3.88 -6.17 3.31 1.00
K2 300 320 C20 C25 HRB335 100 0.40 -2.39 -3.27 2.07 0.52
K3 300 320 C20 C25 HRB335 100 0.72 -1.58 -1.72 1.35 0.27
K4 300 320 C20 C25 HRB335 100 1.04 -1.17 -1.17 1.00 0.17
DH11 K1 300 320 C40 C25 HRB335 100 0.08 -3.69 -5.93 3.32 1.00
K2 300 320 C40 C25 HRB335 100 0.40 -2.31 -3.15 2.09 0.53
K3 300 320 C40 C25 HRB335 100 0.72 -1.49 -1.64 1.36 0.28
K4 300 320 C40 C25 HRB335 100 1.04 -1.09 -1.09 1.00 0.18
DH12 K1 300 320 C30 C20 HRB335 100 0.08 -3.85 -6.13 3.31 1.00
K2 300 320 C30 C20 HRB335 100 0.40 -2.38 -3.26 2.07 0.53
K3 300 320 C30 C20 HRB335 100 0.72 -1.56 -1.71 1.34 0.27
K4 300 320 C30 C20 HRB335 100 1.04 -1.16 -1.16 1.00 0.17
DH13 K1 300 320 C30 C35 HRB335 100 0.08 -3.71 -5.97 3.32 1.00
K2 300 320 C30 C35 HRB335 100 0.40 -2.32 -3.17 2.09 0.53
K3 300 320 C30 C35 HRB335 100 0.72 -1.49 -1.65 1.34 0.28
K4 300 320 C30 C35 HRB335 100 1.04 -1.11 -1.11 1.00 0.18
DH14 K1 300 320 C30 C25 HPB300 100 0.08 -3.93 -6.16 3.32 1.00
K2 300 320 C30 C25 HPB300 100 0.40 -2.45 -3.29 2.07 0.53
K3 300 320 C30 C25 HPB300 100 0.72 -1.56 -1.74 1.36 0.28
K4 300 320 C30 C25 HPB300 100 1.04 -1.19 -1.19 1.00 0.18
DH15 K1 300 320 C30 C25 HRB400 100 0.08 -3.55 -5.97 3.32 1.00
K2 300 320 C30 C25 HRB400 100 0.40 -2.21 -3.17 2.07 0.53
K3 300 320 C30 C25 HRB400 100 0.72 -1.49 -1.65 1.36 0.27
K4 300 320 C30 C25 HRB400 100 1.04 -1.07 -1.07 1.00 0.17

Fig.16

Regression curves of correction coefficient of K 1 and K 2 "

Table 3

Comparison between results from finite element simulation and simplified calculation formula"

叠合板编号 抗剪键编号 抗剪键行间距/mm 抗剪键列间距/mm d/m 模拟V 简化计算V 误差/% 模拟V max 简化计算V max 误差/%
YZ1 K1 300 282 0.08 -3.72 -3.58 3.8 -6.13 -5.92 3.5
K2 300 282 0.36 -2.49 -2.43 2.4 -3.61 -3.68 1.9
K3 300 282 0.64 -1.57 -1.64 4.3 -2.03 -2.13 4.7
K4 300 282 0.92 -1.15 -1.19 3.4 -1.29 -1.33 3.0
YZ2 K1 300 375 0.08 -3.88 -3.79 4.9 -6.29 -6.14 2.6
K2 300 375 0.46 -2.21 -2.24 1.3 -3.04 -3.16 3.8
K3 300 375 0.84 -1.31 -1.36 3.7 -1.54 -1.49 3.2

Table 4

Yield moment and ratio of laminated slabs and cast-in-place slab"

叠合板编号 DH4 DH4-1 DH4-2 DH6 DH7 DH8 DH9 DH10 DH11 DH12 DH13 DH14 DH15
M DH/(kN·m) 5.92 5.98 5.79 5.37 6.11 6.59 7.65 5.91 5.91 5.92 5.91 5.92 5.92
M XJ/(kN·m) 6.17 6.17 6.17 6.17 6.17 6.86 7.97 6.17 6.17 6.17 6.17 6.17 6.17
R 0.96 0.97 0.94 0.87 0.99 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Fig.17

Curve of shear keys number in unit area and R "

1 曹万林, 张洁, 董宏英, 等 . 带钢筋桁架高强再生混凝土板受弯性能试验研究[J]. 建筑结构学报, 2014, 35(10): 31-38.
Cao Wan-lin , Zhang Jie , Dong Hong-ying , et al . Experimental research on flexural performance of high strength recycled aggregate concrete slabs with steel bar truss[J]. Journal of Building Structures, 2014, 35(10): 31-38.
2 Orta L , Bartlett F M . Restrained concrete shrinkage in composite trusses[J]. Canadian Journal of Civil Engineering, 2012, 39(7): 779-788.
3 Josef M , Martin C . Study on shear connection of bridge steel truss and concrete slab deck[J]. Journal of Civil Engineering and Management, 2017, 23(1): 105-112.
4 侯和涛, 蓝如海, 冯明远, 等 . 灌浆钢管桁架混凝土叠合板抗弯性能试验研究[J]. 工业建筑, 2017, 47(7): 29-33.
Hou He-tao , Lan Ru-hai , Feng Ming-yuan , et al . Experimental research on flexural behavior of concrete composite slab with grouted-round-steel tube truss[J]. Industrial Construction, 2017, 47(7): 29-33.
5 侯和涛, 冯明远, 邱灿星, 等 . 预应力混凝土钢肋叠合板受弯性能试验与理论研究[J]. 建筑结构学报, 2018, 39(3): 103-110.
Hou He-tao , Feng Ming-yuan , Qiu Can-xing , et al . Experimental and theoretical study on flexural behavior of prestressed concrete composite slab with steel rib[J]. Journal of Building Structures, 2018, 39(3): 103-110.
6 Bozzo L , Torres L . A proposed semi-prefabricated prestressed composite slab[J]. Structures & Buildings, 2004, 157(5): 309-317.
7 Wang Y Y , Wang Q H , Geng Y , et al . Long-term behavior of simply supported composite slabs with recycled coarse aggregate[J]. Magazine of Concrete Research, 2016, 68(24): 1278-1293.
8 黄超, 古倩, 王朝辉, 等 . 页岩陶粒混凝土叠合板原形堆载试验研究[J]. 武汉理工大学学报, 2016, 38(10): 61-67.
Huang Chao , Gu Qian , Wang Chao-hui , et al . Imposed load test of full-scale shale-ceramsite concrete composite slabs[J]. Journal of Wuhan University of Technology, 2016, 38(10): 61-67.
9 刘运林, 叶献国, 胡昊 . 带格构钢筋混凝土叠合板的数值模拟和格构钢筋作用分析[J]. 合肥工业大学学报: 自然科学版, 2014, 37(9): 1093-1096.
Liu Yun-lin , Ye Xian-guo , Hu Hao . Numerical simulation of superimposed slabs with lattice gird and analysis of the function of lattice gird[J]. Journal of Hefei University of Technology (Natural Science), 2014, 37(9): 1093-1096.
10 王立国 . 带抗剪键叠合板的力学性能及影响因素研究[D]. 沈阳: 沈阳建筑大学土木工程学院, 2016.
Wang Li-guo . Study on mechanical behavior of laminated Slab with shear connectors[D]. Shenyang: College of Civil Engineering, Shenyang Jianzhu University, 2016.
11 GB 50010—2010. 混凝土结构设计规范[S].
12 王强, 朱丽丽, 李哲, 等 . 用于ABAQUS显示分析梁单元的钢筋本构模型研究[J]. 土木工程学报, 2013, 46(增刊2): 100-105.
Wang Qiang , Zhu Li-li , Li Zhe , et al . Study on constitutive model of steel for explicit dynamic beam elements of ABAUQS[J]. China Civil Engineering Journal, 2013, 46(Sup.2): 100-105.
13 高欣, 吴晓伟, 田俊 . 轻骨料混凝土剪力墙非线性有限元模型的构成及影响其抗震性能的因素[J]. 吉林大学学报: 工学版, 2015, 45(5): 1428-1435.
Gao Xin , Wu Xiao-wei , Tian Jun . Structure of nonlinear finite element model of lightweight aggregate concrete share wall and the factors affecting seismic performance[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1428-1435.
14 陈富强, 田唯, 刘占国, 等 . 匹配浇筑混凝土接触面摩擦系数试验研究[J]. 中国港湾建设, 2014, 12: 34-38.
Cheng Fu-qiang , Tian Wei , Liu Zhan-guo , et al . Experiment study on friction coefficient of concrete with matching pouring surface[J]. China Harbor Engineering, 2014, 12: 34-38.
15 季文玉, 李旺旺, 过民龙, 等 . 预应力叠合梁RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报: 工学版, 2018, 48(1): 129-136.
Ji Wen-yu , Li Wang-wang , Guo Min-long , et al . Experimental and calculation methods of prestressed RPC-NC composite beam deflection[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 129-136.
[1] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[2] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[3] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[4] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[5] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[6] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[7] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[8] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory [J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[9] ZHENG Yi-feng, MAO Jian, LIANG Shi-zhong, ZHENG Chuan-feng. Negative skin friction of pile foundation considering soil consolidation in high fill site [J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[10] GUO Nan, ZHANG Ping-yang, ZUO Yu, ZUO Hong-liang. Bending performance of glue-lumber beam reinforced by bamboo plyboard [J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[11] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[12] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[13] GUO Xue-dong, MA Li-jun, ZHANG Yun-long. Analytical solution of the double joint layer composite beam with shear-slip under vertical concentrated load [J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[14] HOU Zhong-ming, WANG Yuan-qing, XIA He, ZHANG Tian-shen. Simply-supported steel-concrete composite beams under moving load [J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[15] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!