Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 2038-2044.doi: 10.13229/j.cnki.jdxbgxb20190243

Previous Articles     Next Articles

Fabric defect recognition algorithm based onimproved Fast RCNN

Xiang-jiu CHE(),Hua-luo LIU,Qing-bin SHAO   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2019-03-15 Online:2019-11-01 Published:2019-11-08

Abstract:

Fabric defect dataset usually has high resolution but small defect area, which is different from common image classification datasets (such as ImageNet, etc). When applying exist classification algorithms to fabric defect dataset directly, it cannot achieve expected accuracy. To address this problem, this paper proposes a new classification algorithm based on improved Fast RCNN. For an image with small defect area, we follow the pipeline of object detection, generating lots of ROI (Region of Interest), extracting feature map with deep convolutional neural network and predicting each ROI's class probability. On the last stage, we combine all ROIs' class probabilities to get the full image's class probability. Experiments performed in a fabric defect dataset which has 3331 high resolution images show that our algorithm outperforms OurNet and exist classification algorithm.

Key words: computer application, fabric defect recognition, convolutional neural network, image classification, object detection

CLC Number: 

  • TP391.4

Fig.1

Architecture of proposed method"

Fig.2

ROI generating procedure"

Fig.3

IOU calculating method for object detection"

Fig.4

Redefined IOU calculating method"

Fig.5

Fabric defect examples that can′tbe included by single ROI"

Fig.6

Global context embedding procedure"

Fig.7

Probability fusion process"

Fig.8

Norm_prob demonstrating"

Fig.9

Multi?task training"

Fig.10

Defect classes distribution"

Fig.11

Comparisons between algorithms on some fabric images with small defect area"

Table 1

Performance comparison on fabricdefect dataset"

AUCmAPScore
OurNet(双网络)0.7870.1040.582
Base?ResNet0.8700.1980.668
本文方法0.9610.4040.794
增加上采样0.9610.4480.807
增加全局信息0.9690.4760.821
1 孙君顶, 李欣, 盛娜, 等. 基于MBLBPV算法的布匹瑕疵检测方法[J]. 测控技术, 2019, 38(1): 71-76.
1 SunJun-ding, LiXin, ShengNa, et al. Fabric defect detection based on multi-scale block local binary patterns variance[J]. Measurement & Control Technology, 2019, 38(1): 71-76.
2 邓超, 刘岩岩. 基于边缘检测的斜纹布匹瑕疵检测[J]. 测控技术, 2018, 37(12): 110-113.
2 DengChao, LiuYan-yan. Twill fabric defect detection based on edge detection[J]. Measurement & Control Technology, 2018, 37(12): 110-113.
3 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报:工学版, 2018, 48(5): 1621-1628.
3 CheXiang-jiu, WangLi, GuoXiao-xin. Improved boundary detection based on multi-scale cues fusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
4 吴志洋, 卓勇, 李军, 等. 基于卷积神经网络的单色布匹瑕疵快速检测算法[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2262-2270.
4 WuZhi-yang, ZhuoYong, LiJun, et al. A fast monochromatic fabric detect fast detection method based on convolutional neural network[J]. Journal of Computer-aided Design & Computer Graphics, 2018, 30(12): 2262-2270.
5 GirshickR. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448.
6 HeKai-ming, ZhangXiang-yu, RenShao-qing, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE conference on computer vision and pattern recognition, Vegas, Nevada, 2016: 770-778.
7 GirshickR, DonahueJ, DarrellT, et al. R-CNN: region-based convolutional neural networks[C]∥Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014: 2-9.
8 RenShao-qing, HeKai-ming, RossGirshick, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]∥Advances in Neural Information Processing Systems, Montréal, CANADA, 2015: 91-99.
9 HeK, GkioxariG, DollárP, et al. Mask R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision,Venice, Italy, 2017: 2961-2969.
10 UijlingsJ R R, van de SandeK E A, GeversT, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
11 SzegedyC, LiuW, JiaY, et al. Going deeper with convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston, Massachusetts, 2015: 1-9.
12 NaikA, RangwalaH. Multi-task Learning[M]. Berlin:Springer, 2018: 75-88.
13 NeubeckA, van GoolL. Efficient non-maximum suppression[C]∥18th International Conference on Pattern Recognition (ICPR?06), Hong Kong, China, 2006: 850-855.
14 LinT Y, GoyalP, GirshickR, et al. Focal loss for dense object detection[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
15 DengJ, DongW, SocherR, et al. Imagenet: a large-scale hierarchical image database[C]∥2009 IEEE Conference on Computer Vision and Pattern Recognition, Florida, US, 2009: 248-255.
[1] Jun SHEN,Xiao ZHOU,Zu-qin JI. Implementation of service dynamic extended network and its node system model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2058-2068.
[2] You ZHOU,Sen YANG,Da-lin LI,Chun-guo WU,Yan WANG,Kang-ping WANG. Acceleration platform for face detection and recognition based on field⁃programmable gate array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2051-2057.
[3] Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050.
[4] Bing-hai ZHOU,Qiong WU. Balancing and optimization of robotic assemble lines withtool and space constraint [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2069-2075.
[5] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[6] Bin LI,Xu ZHOU,Fang MEI,Shuai-ning PAN. Location recommendation algorithm based on K-means and matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1653-1660.
[7] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[8] Yan-jun SUN,Xuan-jing SHEN,Hai-peng CHEN,Yong-zhe ZHAO. Recaptured image forensics algorithm based on local plane linear point [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1320-1328.
[9] Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
[10] Feng⁃wen ZHAI,Jian⁃wu DANG,Yang⁃ping WANG,Jing JIN,Wei⁃wei LUO. Extended contour⁃based fast affine invariant feature extracting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1345-1356.
[11] Yuan-ning LIU,Shuai LIU,Xiao-dong ZHU,Guang HUO,Tong DING,Kuo ZHANG,Xue JIANG,Shu-jun GUO,Qi-xian ZHANG. Iris secondary recognition based on decision particle swarm optimization and stable texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1329-1338.
[12] Bin LI,Guo⁃jun SHEN,Geng SUN,Ting⁃ting ZHENG. Improved chicken swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1339-1344.
[13] Nan WANG,Jin⁃bao LI,Yong LIU,Yu⁃jie ZHANG,Ying⁃li ZHONG. TPR⁃TF: time⁃aware point of interest recommendation model based on tensor factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 920-933.
[14] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[15] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Fu Yan-ning,Liu Lei,Zhang Jia-chen . Model for composing semantic Web service workflows[J]. 吉林大学学报(工学版), 2007, 37(03): 600 -0605 .
[2] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1313 -1316 .
[3] Fu Han-guang. Structure and performance of high boron cast steel liner[J]. 吉林大学学报(工学版), 2006, 36(04): 467 -471 .
[4] Ren Yuan, Cui Ping-yuan1, Luan En-jie. Lowthrust trajectory design method based on nominal orbit[J]. 吉林大学学报(工学版), 2006, 36(06): 998 -1002 .
[5] Lu Jin-zhong,Zhang Yong-kang,Gu Wei,Kong De-jun,Feng Ai-xin . Residual stress of K24 superalloy surface by laser multiple processing[J]. 吉林大学学报(工学版), 2008, 38(02): 309 -0313 .
[6] LIU Tie-gang, LI Jun, GAO Ying . Optimization design for water jacket of 498 diesel engine [J]. 吉林大学学报(工学版), 2008, 38(04): 778 -781 .
[7] LI Li, Qu Zhen-shen, ZENG Qing-shuang . Extended difference function and its application in image motion estimation
[J]. 吉林大学学报(工学版), 2008, 38(04): 897 -901 .
[8] Li Peng,Cui Hu-tao,Cui Ping-yuan . UPF based autonomous navigation scheme for probe encountering small celestial body[J]. 吉林大学学报(工学版), 2007, 37(03): 691 -0695 .
[9] He Bao-qin,Wu Yun-zhu,Fu Li-min . Influence of vehicle shape on the aerodynamic characteristics of intelligent vehicle platoon[J]. 吉林大学学报(工学版), 2008, 38(01): 7 -011 .
[10] DONG Jin-nan1, QIN Gui-he1,2, ZHANG Jin-dong1, CUI Yue1 . Real-time signals transmission based on polynomial predictive filtering theory [J]. 吉林大学学报(工学版), 2008, 38(04): 890 -896 .