Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1739-1746.doi: 10.13229/j.cnki.jdxbgxb20190628

Previous Articles    

Calculation of basic wind pressure based on short⁃term wind speed data

Bo WANG1,2(),Yuan-zheng DONG1,Li-xin DONG1   

  1. 1.School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China
    2.Jilin Structural and Earthquake Resistance Technology Innovation Center, Changchun 130118, China
  • Received:2019-06-21 Online:2020-09-01 Published:2020-09-16

Abstract:

Due to the lack of long-term wind speed data in some regions, the basic wind pressure can not be calculated according to the Building Structure Load Code. It is urgent to get a basic wind pressure for the design of bridges and other engineering structures according to the short-term wind speed data. In this paper, the short-term wind speed data of 54 representative cities in China in 2013~2017 are selected, respectively. The extreme value I-type distribution function is used to fit the parameter estimation with the monthly maximum wind speed data. The moment estimation method and Gumbel method are used to calculate the parameters, which are examined examined using the Kolmogorov-Smirnov test method. The results show that the monthly maximum wind speed data in 54 cities are in line with the extreme value type I distribution. When fitting the monthly maximum wind speed data with the extreme value type I distribution, the Gumbel method has a better fitting effect than the moment estimation method. Therefore, it is feasible to use the maximum monthly wind speed data to fit the extreme value I-type distribution to calculate the basic wind pressure in regions lacking long-term wind speed data. Based on this method, the basic wind pressure was calculated for a recurrence period of 6 months, 50 years and 100 years. The basic wind pressure with a return period of 6 months can provide reference for projects with short design life, such as demolition works. The basic wind pressure with a return period of 50 and 100 years can provide a reference for bridge structural design in areas without long-term wind speed data. Taking Fuyang city as an example, this paper provides an example for the basic wind pressure calculation which lacks long-term wind speed data. The basic wind pressure of lacking the long-term wind speed data and short recurrence period can be calculated.

Key words: civil engineering, basic wind pressure value, short-term wind speed, extreme value type I distribution, Gumbel method, Kolmogorov-Smirnov test

CLC Number: 

  • TU312

Table 1

Result of fitting distribution of extreme value type I with monthly maximum wind speed data"

城市估计方法auσV/%Kf城市估计方法auσV/%Kf
齐齐哈尔矩估计法2.253312.90000.46852.910.0672郑州矩估计法1.662512.57000.36822.170.1205
Gumbel法2.409112.87200.46563.070.0799Gumbel法1.870212.54900.36832.190.1208
哈尔滨矩估计法2.639211.22900.55913.000.0473许昌矩估计法1.308714.14400.45662.260.1079
Gumbel法3.096011.10900.56123.570.0534Gumbel法1.437014.11900.45872.330.1037
乌鲁木齐矩估计法2.254314.67200.70164.380.1223汉中矩估计法1.454310.49930.27452.060.1002
Gumbel法2.466714.62800.69544.320.1198Gumbel法1.570410.48390.27052.170.1063
喀什矩估计法2.604813.61600.91275.730.0882重庆矩估计法1.395313.43300.31291.750.0725
Gumbel法2.707813.53900.86374.620.0673Gumbel法1.495713.41200.30631.900.0861
酒泉矩估计法2.483213.13300.55362.760.0852宜昌矩估计法1.373210.74300.30421.930.0850
Gumbel法2.616413.09200.53622.630.0682Gumbel法1.491010.71400.27941.520.0751
西宁矩估计法1.858310.78990.49973.460.1341武汉矩估计法1.465812.80500.30031.900.0771
Gumbel法1.996810.76830.50863.680.1361Gumbel法1.558112.78500.29421.860.0795
包头矩估计法2.080215.47700.64703.300.1161长沙矩估计法1.529112.44300.28201.720.1143
Gumbel法2.217815.44300.65173.100.1053Gumbel法1.660012.41100.24191.480.0978
呼和浩特矩估计法1.699518.98000.41501.300.0705毕节矩估计法1.198611.28190.20831.380.0905
Gumbel法1.845418.94400.39081.480.0838Gumbel法1.212911.26490.19851.550.1085
大同矩估计法1.594416.79700.45601.970.0877岳阳矩估计法1.654012.95400.33151.820.0980
Gumbel法1.731016.76400.44222.160.0907Gumbel法1.774012.93400.32932.010.1043
银川矩估计法2.534212.08400.56123.880.1460赣州矩估计法1.010811.1110.28331.540.0580
Gumbel法2.985112.05800.56933.860.1416Gumbel法1.097511.0890.27391.570.0688
石家庄矩估计法1.793413.29800.44672.860.1069贵阳矩估计法1.027411.96700.25041.170.0693
Gumbel法1.947013.26000.42242.350.0956Gumbel法1.115611.94500.23571.360.0883
太原矩估计法1.313715.12800.43261.670.0823桂林矩估计法1.183712.08400.25881.480.0765
Gumbel法1.426315.10100.42741.640.0749Gumbel法1.229412.06900.25891.510.0893
西安矩估计法1.703013.01300.56622.900.0765常州矩估计法1.315114.17300.21731.010.0703
Gumbel法1.848812.97700.56002.860.0747Gumbel法1.410814.15500.20600.920.0591
长春矩估计法2.321814.67200.41132.490.0813蚌埠矩估计法1.018315.24000.36621.310.0642
Gumbel法2.681014.64300.40182.230.0658Gumbel法1.105615.21900.36511.310.0704
延吉矩估计法2.105715.46900.74194.090.1304南京矩估计法1.108615.80100.26890.990.0476
Gumbel法2.286215.42400.73813.770.1187Gumbel法1.207115.77800.25461.010.0428
沈阳矩估计法2.198312.33500.37932.200.0585合肥矩估计法1.241614.38800.45751.520.0880
Gumbel法2.529712.30700.36792.200.0636Gumbel法1.371414.36700.46321.930.1030
张家口矩估计法1.589817.00100.60162.350.1197上海矩估计法2.329415.22400.29291.180.0654
Gumbel法1.839916.97600.61292.390.1134Gumbel法2.386115.20800.29331.160.0838
大连矩估计法2.328816.30200.62143.450.1352杭州矩估计法1.234914.19900.27911.200.0626
Gumbel法2.453416.26200.61393.250.1371Gumbel法1.280214.18000.27331.220.0741
北京矩估计法1.686114.55800.47922.280.1700金华矩估计法1.136913.71900.26631.300.0519
Gumbel法1.820514.53700.48802.360.1734Gumbel法1.218013.70000.25901.270.0652
天津矩估计法1.504216.80900.49691.910.1025南昌矩估计法1.958911.47300.28251.390.0603
Gumbel法1.633216.77700.49112.110.1015Gumbel法2.075611.45300.27731.600.0783
济南矩估计法1.432015.57500.26880.990.0936福州矩估计法2.504414.52600.43342.130.0833
Gumbel法1.593915.55100.25250.970.1082Gumbel法2.793314.49300.41922.170.0811
青岛矩估计法1.915017.72800.42332.090.1082厦门矩估计法2.936013.19700.24991.270.0632
Gumbel法2.017317.70300.42172.080.0933Gumbel法3.296013.17200.22671.290.0714
拉萨矩估计法1.199112.02200.40702.480.1350广州矩估计法1.602814.35900.57083.090.1331
Gumbel法1.223112.00800.41772.710.1412Gumbel法1.789514.33300.57983.040.1271
成都矩估计法1.385610.74600.36932.640.1219南宁矩估计法1.437211.72900.24251.400.0596
Gumbel法1.455810.72520.36962.410.1069Gumbel法1.560311.69900.19821.030.0580
绵阳矩估计法1.152310.98900.34122.310.0918深圳矩估计法2.764014.66100.33661.770.0907
Gumbel法1.263610.96700.33722.310.0837Gumbel法3.059014.63500.32461.860.1003
大理矩估计法2.670911.78800.26191.430.0908海口矩估计法2.986915.0421.02744.220.1452
Gumbel法3.113311.75600.21991.250.0768Gumbel法3.327814.9941.04084.970.1610
昆明矩估计法1.851212.15600.32421.850.0649三亚矩估计法3.247816.56101.00282.700.0931
Gumbel法2.042512.12300.29171.440.0493Gumbel法3.526116.49200.98313.580.1071

Table 2

Basic wind pressure based on short-term wind speed data"

编号城市不同重现期编号城市不同重现期
6个月50年100年6个月50年100年
1齐齐哈尔0.1760.4870.54728郑州0.1510.3670.406
2哈尔滨0.1550.5210.59429许昌0.1670.3310.360
3乌鲁木齐0.2080.5120.56930汉中0.0980.2110.232
4喀什0.1830.4670.52131重庆0.1250.2320.251
5酒泉0.1770.4830.54132宜昌0.1070.2500.276
6西宁0.0830.1730.19033武汉0.1370.2680.292
7包头0.2060.4260.46734长沙0.1420.3230.357
8呼和浩特0.2980.5770.62635毕节0.0930.1980.217
9大同0.2520.5540.60936岳阳0.1280.2840.312
10银川0.1730.5510.62637赣州0.1490.3930.439
11石家庄0.1680.4030.44738贵阳0.1170.2220.240
12太原0.1870.3570.38839桂林0.1220.2420.264
13西安0.1590.3750.41540常州0.1670.3280.356
14长春0.2250.6170.69141蚌埠0.1780.3030.324
15延吉0.2280.5510.61042南京0.1940.3370.361
16沈阳0.1680.4950.55843合肥0.1700.3270.354
17张家口0.2470.5040.54944上海0.2260.5670.629
18大连0.2600.6550.72845杭州0.1580.2800.301
19北京0.1890.4180.45946金华0.1520.2820.304
20天津0.2330.4520.49047南昌0.1370.3730.417
21济南0.2030.4040.43948福州0.2260.6380.717
22青岛0.2580.5360.58449厦门0.2150.7160.814
23拉萨0.0910.1500.15950广州0.1840.4100.445
24成都0.0980.2030.22251南宁0.1260.2870.316
25绵阳0.1050.2210.22452深圳0.2400.7130.805
26大理0.1770.6110.69853海口0.2360.7590.862
27昆明0.1370.3220.35654三亚0.3090.9301.050

Fig.1

Basic wind pressure comparison with a recurrence period of 50 years"

Fig.2

Basic wind pressure comparison with a recurrence period of 100 years"

1 Wang B, Etheridge D W, Ohba M. Wind tunnel investigation of natural ventilation through multiple stacks. Part 1: mean values[J]. Building & Environment, 2011, 46(7): 1380-1392.
2 GB50009—2012. 建筑结构荷载规范[S].
3 Mircea G. Estimation of extreme wind from short records[J]. Journal of the Structural Division, 1982, 108(5): 1034-1048.
4 陈朝辉, 管前乾. 基于短期资料的重庆风速极值渐进分布分析[J]. 重庆大学学报: 自然科学版, 2006, 29(12): 88-92.
Chen Zhao-hui, Guan Qian-qian. Simulating of asymptotic distributions of extreme wind speed in Chongqing using short-term wind speed records[J]. Journal of Chongqing University(Natural Science Edition), 2006, 29(12): 88-92.
5 罗乃东. 基于可靠度的高层、高耸结构抗风分析[D]. 大连: 大连理工大学土木工程学院, 2002.
Luo Nai-dong. Study of wind-resistant of tall building base on reliability theory[D]. Dalian: School of Civil Engineering, Dalian University of Technology, 2002.
6 Lee B H, Ahn D J, Kim H G, et al. An estimation of the extreme wind speed using the Korea wind map[J]. Renewable Energy, 2012, 42: 4-10.
7 孟庆珍, 唐谟智. 成都地面气温与风速年极大值的渐近分布及参数估计[J]. 成都气象学院学报, 1997, 12(4): 284-291.
Meng Qing-zhen, Tang Mo-zhi. On asymptotic distribution of yearly maximum values of surface temperature and wind speed over Chengdu and the estimation of their parameters[J]. Journal of Chengdu Institute of Meteorology, 1997, 12(4): 284-291.
8 Harris I. Generalised pareto methods for wind extremes. Useful tool or mathematical mirage?[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2005, 93(5): 341-360.
9 Galambos J. The Cassical Extreme Value Model: Mathematical Results Versus Statistical Inference[M]. New York: Statistics for the 21st Century, 2000: 173-187.
10 Elahi A S, Ghoranneviss M, Emami M. Comparative measurements of plasma position using multipole moments method and analytical solution of grad-shafranov equation in IR-T1 tokamak[J]. Journal of Fusion Energy, 2009, 28(4): 385-389.
11 张勇. 基本风压、雪压统计分析与荷载组合系数研究[D]. 沈阳: 沈阳建筑大学土木工程学院, 2011.
Zhang Yong. Statistical analysis about basic wind and snow pressure and research about load combinatorial coefficient[D]. Shenyang: School of Civil Engineering, Shenyang University of Architecture, 2011
12 段忠东, 周道成. 极值概率分布参数估计方法的比较研究[J]. 哈尔滨工业大学学报, 2004, 36(12): 1605-1609.
Duan Zhong-dong, Zhou Dao-cheng. A comparative study on parameter estimate method for extremal value distribution[J]. Journal of Harbin Institute of Technology, 2004, 36(12): 1605-1609.
13 康朝杰, 杜文风, 杨雪. 基于极大似然法的雪荷载计算与分析[J]. 河南大学学报: 自然科学版, 2016, 46(2): 220-225.
Kang Chao-jie, Du Wen-feng, Yang Xue, et al. Calculation and analysis of snow loads based on the maximum likelihood method[J]. Journal of Henan University(Natural Science), 2016, 46(2): 220-225.
14 Zhang C L, Fan J H. An X-ray luminosity analysis for FRIs and FRIIs[J]. Science in China Series G Physics Mechanics and Astronomy, 2009, 52(9): 1434-1441.
15 方晓, 张运福, 房一禾. 辽宁省沿海地区极值风速概率分布特征[J]. 现代农业科技, 2015(22): 256-257, 259.
Fang Xiao, Zhang Yun-fu, Fang Yi-he. Characteristic of probability distribution of extreme wind speeds in coast area of Liaoning province[J]. XianDai NongYe KeJi, 2015(22): 256-257, 259.
16 叶征伟. 山区高墩大跨连续刚构桥风环境及风荷载研究[D]. 杭州: 浙江大学建筑工程学院, 2012.
Ye Zheng-wei. Study on the wind-environment and wind loads of the long-span continuous rigid frame bridge with tall piers in mountainous areas[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2012.
17 屠其璞. 气象应用概率统计学[M]. 北京: 气象出版社, 1984.
18 王卫锋, 颜全胜, 李立军, 等. 大跨度斜拉桥侧风非线性分析[J]. 吉林大学学报: 工学版, 2007, 37(4): 786-789.
Wang Wei-feng, Yan Quan-sheng, Li Li-jun, et al. Nonlinear analysis for a long span cable stayed bridge under lateral wind loads[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(4): 786-789.
19 姜浩, 郭学东, 张艳辉. 基于时域分析的风载激励下桥梁结构动力特性识别[J]. 吉林大学学报: 工学版, 2011,41(5): 1279-1283.
Jiang Hao, Guo Xue-dong, Zhang Yan-hui. Dynamic behavior identification of concrete bridge structure under wind load excitation based on time-domain analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5): 1279-1283.
[1] Su-duo XUE,Jian LU,Xiong-yan LI,Ren-jie LIU. Influence of grid⁃jumping arrangement on static and dynamic performance of annular crossed cable⁃truss structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1687-1697.
[2] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[3] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[4] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[5] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[6] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[7] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[8] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[9] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[10] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory [J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[11] ZHENG Yi-feng, MAO Jian, LIANG Shi-zhong, ZHENG Chuan-feng. Negative skin friction of pile foundation considering soil consolidation in high fill site [J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[12] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[13] GUO Nan, ZHANG Ping-yang, ZUO Yu, ZUO Hong-liang. Bending performance of glue-lumber beam reinforced by bamboo plyboard [J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[14] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[15] GUO Xue-dong, MA Li-jun, ZHANG Yun-long. Analytical solution of the double joint layer composite beam with shear-slip under vertical concentrated load [J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!