Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 654-667.doi: 10.13229/j.cnki.jdxbgxb20181062

Previous Articles    

Experimental of loading-bearing capacity of one-way laminated slab with shear keys

Ming LI1(),Hao-ran WANG1,Wei-jian ZHAO2   

  1. 1.School of Civil Engineering,Shenyang Jianzhu University,Shenyang 110168,China
    2.College of Civil Engineering and Architecture,Zhejiang University, Hangzhou 310058,China
  • Received:2018-10-22 Online:2020-03-01 Published:2020-03-08

Abstract:

In order to study the mechanical characteristics of the laminated slab with shear keys, a static test with 7 slabs was carried out and an supplementary analysis was made by finite element method. The results show that different types of shear keys can ensure the reliability of the interface of the laminated slab to enable its mechanical characteristics close to the cast-in-place slab. The concrete is firmly bonded between cast-in-place layer and precast layer, and between shear key and precast layer, which has a good integrity. The simply supported laminated slab with shear keys can be approximately calculated according to the once force bearing component when the span is less than 3.2 m. When the contact between the precast base plate and the cast-in-place layer is made in a friction manner, the yield load of the laminated slab increases and the yield displacement decreases with the increases in the number of rows of shear key, the number of columns of shear key and the cross-sectional area. The number of columns of shear key has a more obvious influence. When the above three factors increase to a certain extent, the influence is no longer obvious. After a certain number of shear keys are arranged, the strength grade of the concrete of shear key, the strength grade of the concrete of cast-in-place layer, and the friction coefficient have little influence on the bearing capacity of the laminated slab and the yield displacement. Finally, the stiffness formula of the laminated slab with shear keys is established.

Key words: civil engineering, laminated slab, shear key, mechanical properties, influence factor, stiffness formula

CLC Number: 

  • TU375.2

Table 1

Main information about specimens"

编号构造形式板长/mm板宽/mm板厚/mm板混凝土强度等级抗剪键形式抗剪键行间距/mm抗剪键列间距/mm抗剪键混凝土强度等级
SJ1现浇板2 4101 220100C25----
SJ2叠合板2 4101 220100C25弧形300320C30
SJ3叠合板2 4101 220100C25弧形300450C30
SJ4叠合板2 4101 220100C25弧形300560C30
SJ5叠合板2 4101 220100C25---C30
SJ6叠合板2 4101 220100C25正方体300450C30
SJ7叠合板2 4101 220100C25内置钢筋笼弧形300450C30

Fig.1

Structure of shear keys"

Fig.2

Arrangement diagram of steel bars and shear keys in specimen (SJ2)"

Fig.3

Process of making laminated slab"

Fig.4

Loading system of experiment"

Fig.5

Location of displacement meter and strain gauge"

Fig.6

Load-strain curve of longitudinal bearing force reinforcement"

Table 2

Cracking load and ultimate load of each specimen"

组别编号开裂荷载/kN极限荷载/kN
第一组SJ119.232.3
SJ318.530.9
SJ518.128.8
第二组SJ218.731.5
SJ318.530.9
SJ418.330.0
SJ518.128.8
第三组SJ318.530.9
SJ618.631.2
SJ718.932.0

Fig.7

Distribution of cracks along the side of each slab"

Fig.8

Comparison among load-deflection curves of laminated slab with or without shear keys"

Fig.10

Comparison among load-deflection curves of laminated slabs with different shear key shape"

Fig.9

Comparison among load-deflection curves of laminated slabs with different shear key spacing"

Fig.11

Crack development at shear key"

Fig.12

Constraints,loading and mesh generation of finite elementmodel"

Fig.13

Comparison among simulation and experimentload-deflection curves"

Table 3

Ratio of laminated slabrigidity under differentstress conditions"

板编号板跨度/mBs/103(kN·m2)Bc/103(kN·m2)Bs/Bc
SJ82.43.943.830.029
SJ92.64.264.150.031
SJ102.84.674.490.037
SJ113.05.144.890.042
SJ123.25.655.380.047
SJ133.46.2235.840.062
SJ143.66.846.290.081
SJ153.87.626.810.105
SJ164.08.2537.170.134

Fig.14

Comparison among load-deflection curves of laminated slabs under different load conditions"

Table 4

Main information about designed laminated slabspecimens"

板编号抗剪键行数抗剪键列数

抗剪键

行间距/mm

抗剪键列间距/mm抗剪键面积/mm2抗剪键强度等级现浇板强度等级摩擦因数
SJ46300450100×100C30C250.8
R-666180450100×100C30C250.8
R-336450450100×100C30C250.8
R-226900450100×100C30C250.8
L-10410300250100×100C30C250.8
L-848300321100×100C30C250.8
L-545300563100×100C30C250.8
L-444300750100×100C30C250.8
Ak-15046283440150×150C30C250.8
Ak-12046293446120×120C30C250.8
Ak-804630045080×80C30C250.8
Ak-404630045040×40C30C250.8
Ck-4046300450100×100C40C250.8
Ck-2046300450100×100C20C250.8
Cx-3546300450100×100C30C350.8
Cx-2046300450100×100C30C200.8
f-0.646300450100×100C30C250.6
f-0.446300450100×100C30C250.4
f-046300450100×100C30C250

Fig.15

Comparison among load-deflection curves of laminated slabs with different shear key row number"

Fig.16

Comparison among load-deflection curves of laminated slabs with different shear key line number"

Fig.17

Comparison among load-deflection curves of thelaminated slabs with different shear key cross sectional area"

Fig.18

Comparison among load-deflection curves of laminated slabs with different cast-in-place concrete strength"

Fig.19

Comparison among load-deflection curves of laminated slabs with different shear key concrete strength"

Fig.20

Comparison among load-deflection curves of laminated slabs with different friction factor"

Table 5

List of data for correction"

板编号Bd/103(kN·m2Bd/Bxr
SJ3.670.910.082
R-63.780.940.122
R-33.580.920.061
R-23.4730.860.041
L-103.870.960.136
L-83.740.930.109
L-53.580.890.068
L-43.460.860.054
Ak-1503.940.980.184
Ak-1203.860.960.118
Ak-803.540.860.052
Ak-403.310.820.013

Fig.21

Fitting curve of correction coefficient Rb"

Table 6

Comparison of deflection formula calculation and finite element simulation results"

板编号板跨度/mm支撑条件加载方式荷载大小/kN挠度fr计算f/mm模拟f/mmf误差/%
B12 200两端简支中点集中30Fl3/48Bs20.18152.755.75.6
B22 600四分点集中15+1511Fl3/384Bs20.13461.565.86.8
B33 000均布105ql4/384Bs20.07689.493.85.1
B42 500

一端简支

一端自由

自由端集中30Fl3/3Bs20.152570.1612.27.4
B52 700中点集中305Fl3/48Bs20.127234.7253.78.1
B62 900均布10ql4/8Bs20.059708.8769.58.6
B72 400两端固支中点集中30Fl3/192Bs20.10518.218.83.4
B82 800均布10ql4/384Bs20.06312.713.34.8
B93 100

一端简支

一端固支

中点集中30Fl3/107Bs20.09461.865.76.3
B103 300均布10ql4/184Bs20.05844.347.26.5
1 赵唯坚. 超高强材料与装配式结构[J]. 工程力学, 2012, 29(增刊2): 31-42.
Zhao Wei-jian. Ultra-high strength materials and precast concrete structures[J]. Engineering Mechanics, 2012, 29(Sup.2): 31-42.
2 杨联萍, 余少乐, 张其林, 等. 叠合剪力墙结构研究现状和关键问题[J]. 建筑结构, 2017, 47(12): 78-88.
Yang Lian-ping, Yu Shao-le, Zhang Qi-lin, et al. Research status quo and key issues in superimposed shear wall structure[J]. Building Structure, 2017, 47(12): 78-88.
3 赵广军. 预制装配式混凝土结构发展现状分析[J]. 工程质量, 2016, 34(7): 16-18.
Zhao Guang-jun. The development prospects of the prefabricated concrete structure[J]. Construction Quality, 2016, 34(7): 16-18.
4 Vaquero S F, Correa D R, Wolkomirski S F. Precast concrete,steel-braced,hybrid pipe rack structures[J]. PCI Journal, 2013, 58(4): 55-67.
5 JGJ 1—2014. 装配式混凝土结构技术规程[S].
6 刘香, 倪东阳, 李娟. 预制带肋钢筋桁架叠合板的试验与有限元分析[J]. 沈阳建筑大学学报: 自然科学版, 2018, 34(1): 42-52.
Liu Xiang, Ni Dong-yang, Li Juan. Experimental study and finite element analysis of prefabricated ribbed steel truss laminated slabs[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(1): 42-52.
7 Chou C C,Chen J H. Development of floor slab for steel post-tensioned self-centering moment frames[J]. Journal of Constructional Steel Research, 2011, 67(10): 1621-1635.
8 李明, 赵唯坚, 孙哲哲. 带抗剪键的混凝土叠合楼板、预制构造和施工方法[P]. 中国: CN201210279952, 2014-09-24.
9 肖景平. 预应力高强叠合结构叠合梁生产工艺[J]. 建筑技术, 2014, 45(1): 53-55.
Xiao Jing-ping. Production process of prestressed high-strength superimposed beam[J]. Architecture Technology, 2014, 45(1): 53-55.
10 GB/T 50152—2012 混凝土结构试验方法标准[S]. 北京: 中国建筑工业出版社, 2012.
11 GB 50010—2010. 混凝土结构设计规范[S].
12 徐国林, 徐倩, 王祥建, 等. 混凝土单轴弹塑性损伤本构模型及参数确定[J]. 广西大学学报: 自然科学版, 2016, 41(2): 332-338.
Xu Guo-lin, Xu Qian, Wang Xiang-jian, et al. Uniaxial elastic-plastic damage constitutive model and parameters of concrete[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(2): 332-338.
13 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报: 工学版, 2018, 48(5): 1426-1435.
Dai Yan, Nie Shao-feng, Zhou Tian-hua. Finite element analysis of hysteretic behavior of square steel tube confined steel reinforced concrete column steel frame ring beam joint[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1426-1435.
14 陈富强, 田唯, 刘占国, 等. 匹配浇筑混凝土接触面摩擦系数试验研究[J]. 中国港湾建设, 2014(12): 34-38.
Chen Fu-qiang, Tian Wei, Liu Zhan-guo, et al. Experiment study on friction coefficient of concrete with matching pouring surface[J]. China Harbor Engineering, 2014(12): 34-38.
15 孙兵, 丁德鑫, 曾晟, 等. 钢筋混凝土叠合结构二次受力过程数值分析[J]. 华中科技大学学报: 城市科学版, 2008, 25(4): 260-263.
Sun Bing, Ding De-xin, Zeng Sheng, et al. Numerical analysis of two-stage loading progresses on reinforcement concrete composite structures[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(4): 260-263.
16 郭楠, 张平阳, 左熠, 等. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报: 工学版, 2017, 47(3): 778-788.
Guo Nan, Zhang Ping-yang, Zuo Yi, et al. Bending performance of glue-lumber beam reinforced by bamboo plyboard[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 778-788.
[1] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[2] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[3] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[4] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[5] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[6] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[7] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[8] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[9] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[10] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[11] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[12] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory [J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[13] ZHENG Yi-feng, MAO Jian, LIANG Shi-zhong, ZHENG Chuan-feng. Negative skin friction of pile foundation considering soil consolidation in high fill site [J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
[14] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[15] GUO Nan, ZHANG Ping-yang, ZUO Yu, ZUO Hong-liang. Bending performance of glue-lumber beam reinforced by bamboo plyboard [J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!