Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2079-2086.doi: 10.13229/j.cnki.jdxbgxb20200614

Previous Articles    

Evolution law and model estimation and modification of resilience modulus of coarse grained soil subgrade under wet and dry cycle

Wu-ping RAN1(),Hui-min CHEN1,Ling LI1,Li-qun FENG2   

  1. 1.School of Civil Engineering & Architecture,Xinjiang University,Urumqi 830047,China
    2.Research Department of Road & Bridge,Research Institute of Xinjiang Transportation Science,Urumqi 830002,China
  • Received:2020-08-11 Online:2021-11-01 Published:2021-11-15

Abstract:

With the help of the dynamic triaxial test system, the changes of coarse-grain soil rebound modulus under different moisture content, stress loading paths and dry and wet cycles (N) are studied. A several estimation models are used to determine the Ni model as the estimation model of coarse-grain soil modulus, and the correction coefficient and fitting equation are put forward. The test results show that the rebound modulus decreases with the increase of water content, and the rebound modulus corresponding to 4% water content is the largest. When the partial stress is fixed, the surrounding pressure and the rebound modulus are negatively correlated with the rebound modulus. With the increase of N the rebound modulus has the trend of decay, which reaches the maximum at N=1~2, and the decay is reduced at N=3~4, when N>4, the rebound modulus becomes stable. The research results provide a reference basis for the design of coarse-grain soil subgrade.

Key words: road engineering, coarse-grained soil, dry-wet cycle, correction coefficient, modulus estimate

CLC Number: 

  • UT411

Fig.1

Grading and screening curve of the test soil"

Table 1

Stress-loading sequence of coarse soil"

加载序列号围压σ3/kPa循环偏应力σd/kPa最大轴向应力σmax/kPa荷载作用次数
03060661000
115811100
2301521100
3452332100
4151518100
5303036100
6454554100
7153033100
8306066100

Fig.2

Sample making and loading system"

Fig.3

Relationship between water content and modulus of resilience"

Fig.4

Relationship between modulus ofresilience and deviatoric stress"

Fig.5

Relationship between the number of wet and dry cycles and the modulus of dynamic resilience"

Fig.6

Relationship between MR and stress loading path"

Table 2

Regression of fitting parameters of the predicted mode"

模 型拟合公式ω/%k1k2k3R2
K-θMR=k1θk2460.180.16?0.29
559.080.14?0.29
650.990.15?0.26
围压MR=k1σ3k2455.930.24?0.65
556.260.20?0.64
646.930.23?0.63
UzanMR=k1θk2σdk3445.830.28-0.110.63
545.310.25-0.110.54
639.610.26-0.110.53
NCHRP1-28AMR=k1paθpak2τoctpa+1k341.460.260.940.66
51.260.230.690.74
61.140.230.940.62
NiMR=k1paσ3pa+1k2σdpa+1k341.460.260.940.82
51.260.230.690.89
61.140.230.940.77

Fig.7

Relationship between dry and wet cycle times and correction coefficient"

Table 3

Correction coefficient of dry and wet cycle(ω=5%)"

/kPaσ3

σd

/kPa

修正系数拟合公式β=a+bx+cx2+dx3粗粒回弹模量干湿循环修正系数β
abcdRN=0N=1N=2N=3N=4N=5
1581.003-0.1570.026-0.002>0.9510.880.780.700.700.65
150.997-0.1550.024-0.001>0.9510.850.780.710.670.65
301.003-0.2000.041-0.003>0.9510.850.730.690.660.62
30151.002-0.073-0.0160.004>0.9510.920.820.730.700.69
301.002-0.1270.0100.001>0.9510.890.800.710.700.69
600.999-0.1460.017-0.000>0.9510.870.770.700.650.63
45231.005-0.1140.017-0.001>0.9510.920.820.730.700.69
450.999-0.1580.220-0.001>0.9510.860.770.700.670.66
干湿循环修正系数取值范围

0.85~

0.92

0.73~

0.82

0.69~

0.73

0.65~

0.70

0.62~

0.69

1 张芳枝, 陈晓平. 反复干湿循环对非饱和土的力学特性影响研究[J]. 岩土工程学报,2010,32(1):41-46.
Zhang Fang-zhi, Chen Xiao-ping. Effects of repeated dry-wet cycles on mechanical properties of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1):41-46.
2 陈华庆. 干湿循环条件下路基材料软化规律与设计参数取值[D]. 南京:东南大学交通学院,2018.
Chen Hua-qing. Softening rule and design parameters of subgrade materials under dry-wet cycling condition[D]. Nanjing:School of Communications, Southeast University, 2018.
3 朱炳,曹学兴,李维朝,等. 不良级配粗粒土渗透变形的数值试验[J]. 中国水利水电科学研究院学报,2020,18(3):178-185.
Zhu Bing, Cao Xue-xing, Li Wei-chao, et al. Numerical test of permeability deformation of poor graded coarse graded soil[J]. Journal of China Institute of Water Resources and Hydropower Research,2020, 18(3):178-185.
4 胡焕校,段旭龙,何忠明,等. 动三轴CT条件下粗粒土填料的力学特性与细观力学性能分析[J]. 中国公路学报,2018,31(11):42-50.
Hu Huan-xiao, Duan Xu-long, He Zhong-ming, et al. Mechanical properties and microscopic mechanical properties of coarse-grained soil fillers under dynamic triaxial CT[J]. Chinese Journal of Highway and Transport,2018,31(11):42-50.
5 刘雨,朱自强,陈俊桦. 干湿循环条件下水泥改良泥质板岩粗粒土的静力特性试验研究[J]. 中南大学学报:自然科学版,2019,50(3):679-686.
Liu Yu, Zhu Zi-qiang, Chen Jun-hua. Experimental study on static characteristics of coarse grained soil of cement modified argillaceous slate under dry-wet circulation[J]. Journal of Central South University(Science and Technology),2019,50(3):679-686.
6 Yan K Z, Xu H B, Shen G H. Novel approach to resilient modulus using routine subgrade soil properties[J]. International Journal of Geomechanics, 2014, 14(6):No.04014025.
7 Zhou C J, Huang B S, Drumm E, et al. Soil resilient modulus regressed from physical properties and influence of seasonal variation on asphalt pavement performance[J]. Journal of Transportation Engineering, 2015, 141(1): No.04014069.
8 Han Z, Vanapalli S K, Zou W L. Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils[J]. Canadian Geotechnical Journal, 2017, 54(5):646-663.
9 李志勇,董城,邹静蓉,等. 湘南地区红黏土动态回弹模量试验与预估模型研究[J]. 岩土力学,2015,36(7):1840-1846.
Li Zhi-yong, Dong Cheng, Zou Jing-rong, et al. Dynamic modulus of resilience test and prediction model of red clay in southern Hunan[J]. Rock and Soil Mechanics, 2015, 36(7):1840-1846.
10 Garven E A, Vanapalli S K. Evaluation of empirical procedures for predicting the shear strength of unsaturated soils[C]∥Fourth International Conference on Unsaturated Soils, Carefree, Arizona, United States, 2006:2570-2581.
11 刘维正,曾奕珺,姚永胜,等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报,2019,41(1):175-183.
Liu Wei-zheng, Zeng Yi-jun, Yao Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1):175-183.
12 冉武平,李玲,张翛,等. 重塑黄土动态回弹模量依赖性分析及预估模型[J]. 湖南大学学报:自然科学版,2018,45(9):130-137.
Ran Wu-ping, Li Ling, Zhang Jian, et al. Dynamic modulus of resilience dependence analysis and prediction model of remolded loess [J]. Journal of Hunan University (Natural Sciences), 2018, 45(9):130-137.
13 李聪,邓卫东,崔相奎. 干湿循环条件下完全扰动黄土路基回弹模量分析[J]. 交通科学与工程,2009,25(2):8-12.
Li Cong, Deng Wei-dong, Cui Xiang-kui. Analysis of modulus of return of completely disturbed loess subgrade under dry-wet cycle condition[J]. Journal of Transport Science and Engineering, 2009, 25(2):8-12.
14 李冬雪,凌建明,钱劲松,等. 湿度循环下黏质路基土回弹模量演化规律[J]. 同济大学学报:自然科学版,2013,41(7):1051-1055.
Li Dong-xue, Ling Jian-ming, Qian Jin-song, et al. Evolution of modulus of resilience of clay subgrade soil under humidity cycle[J]. Journal of Tongji University (Natural Science ), 2013,41(7):1051-1055.
15 凌建明,陈卉,钱劲松,等. 湿度有限波动下非饱和黏土路基动态回弹模量[J]. 吉林大学学报:工学版,2020,50(2):613-620.
Ling Jian-ming, Chen Hui, Qian Jin-song, et al. Dynamic modulus of resilience of unsaturated clay subgrade with limited humidity fluctuation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(2):613-620.
16 林小平,李兴华,凌建明,等. 路基土回弹模量湿度调整系数预估研究[J]. 同济大学学报:自然科学版,2011,39(10):1490-1494.
Lin Xiao-ping, Li Xing-hua, Ling Jian-ming,et al.Study on estimation of humidity adjustment coefficient of retroelastic modulus of subgrade[J]. Journal of Tongji University(Natural Science), 2011,39(10):1490-1494.
17 . 公路土工试验规程[S].
18 曹光栩,宋二祥,徐明. 碎石料干湿循环变形试验及计算方法[J]. 哈尔滨工业大学学报,2011,43(10):98-104.
Cao Guang-zhi, Song Er-xiang, Xu Ming. Study on experiment and calculation method of dry-wet cycle characteristics of rockfills[J]. Journal of Harbin Institute of Technology,2011,43(10):98-104.
19 高志伟,王选仓,宋学艺,等. 新疆地区公路路基含水量年变化规律[J]. 长安大学学报:自然科学版,2011,31(3):27-32.
Gao Zhi-wei, Wang Xuan-cang, Song Xue-yi, et al. Annual variation regularity of water content of highway subgrade in Xinjiang[J]. Journal of Chang'an University (Natural Science Edition), 2011, 31(3):27-32.
20 罗志刚. 路基与粒料层动态模量参数研究[D]. 上海:同济大学交通运输学院,2007.
Luo Zhi-gang. Research on dynamic modulus parameters of subgrade and granular layers[D]. Shanghai: School of Transportation, Tongji University, 2007.
21 石章入,曾亚武,刘芙蓉. 土石混合路基填料动回弹模量试验研究[J].水利与建筑工程学报,2018,16(3):138-143, 154.
Shi Zhang-ru, Ya-wu Zen, Liu Fu-rong. Study on the dynamic rebound modulus of soil and stone mixed roadbed fillers[J]. Journal of Water Resources and Architectural Engineering, 2018,16(3):138-143, 154.
22 王瀚霖. 高速铁路路基力学性能及水分运移规律研究[D]. 杭州:浙江大学岩土工程研究所,2017.
Wang Han-lin. A study on mechanical properties of high speed railway subgrade and the law of water migration[D]. Hangzhou: Institute of Geotechnical Engineering, Zhejiang University, 2017.
23 Seed H B, Mitry F G, Monosmith C L, et al. Prediction of flexible pavement deflections from laboratory repeated-load tests[R]. Transportation Research Board, Washington D C, 1967.
24 张军辉,彭俊辉,郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报,2020,33(1):1-13.
Zhang Jun-hui, Peng Jun-hui, Zheng Jian-long. Estimated progress and outlook of dynamic rebound modulus on the roadbed soil[J]. Chinese Journal of Highway and Transport, 2020, 33(1):1-13.
25 欧阳卫锋. 路基红粘土动态回弹模量影响因素及预估模型研究[D]. 长沙:长沙理工大学交通运输工程学院,2016.
Ouyang Wei-feng. Study on the influence factors and estimated models of dynamic rebound modulus of road-based red clay[D]. Changsha: School of Traffic and Transportation Engineering, Changsha University of Technology, 2016.
[1] Zhe-pu XU,Qun YANG. Short⁃term maintenance operation start time optimization based on real⁃time traffic map data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1763-1774.
[2] Chang-ping WEN,Huan-xia REN. Constitutive relation with double yield surfaces of bioenzyme⁃treated expansive soil based on Lade model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1716-1723.
[3] Yuan-yuan WANG,Lu SUN,Wei-dong LIU,Jin-shun XUE. Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1342-1348.
[4] Yong PENG,Han-duo YANG,Xue-yuan LU,Yan-wei LI. Effect of void characteristics on virtual shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
[5] Wei-gang ZHU,Chao ZHU,Ya-qiu ZHANG,Hai-bin WEI. Construction and quality evaluation of digital elevation model based on convolution grid surface fitting algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1073-1080.
[6] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[7] Ya-feng GONG,Yun-ze PANG,Bo WANG,Guo-jin TAN,Hai-peng BI. Mechanical properties of new prefabricated box culvert structure based on road conditions in Jilin Province [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 917-924.
[8] En-hui YANG,Jia-qiu XU,You-zhi TANG,Ao LI,Yan-jun QIU. Effect of warm mixing agents on fracture and aging properties of asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 604-610.
[9] Wen-ting DAI,Ze-hua SI,Zhen WANG,Qi WANG. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
[10] Yu FANG,Li-jun SUN. Urban bridge performance decay model based on survival analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 557-564.
[11] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[12] Ping WAN,Chao-zhong WU,Xiao-feng MA. Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[13] Rui XIONG,Ning QIAO,Ci CHU,Fa YANG,Bo-wen GUAN,Yan-ping SHENG,Dong-yu NIU. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 183-190.
[14] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[15] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!