Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 604-610.doi: 10.13229/j.cnki.jdxbgxb20190984

Previous Articles    

Effect of warm mixing agents on fracture and aging properties of asphalt

En-hui YANG1,2(),Jia-qiu XU1,2,You-zhi TANG1,2,Ao LI1,2,Yan-jun QIU1,2   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.Key Laboratory of Highway Engineering of Sichuan Province,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2019-10-22 Online:2021-03-01 Published:2021-02-09

Abstract:

The current DSR test and BBR test have limitations in evaluating the fracture performance of warm mix asphalt. In order to accurately predict the effect of warming agent on the fracture properties of asphalt materials, two different types of warming agents (Sasobit and ET-3100) were added to the matrix asphalt, then the rotating thin film oven(RTFO) and pressure aging vessel(PAV) tests were carried out to study the fracture properties of the warm mix asphalt. The extended bending beam rheometer(Ex-BBR) test and double edge notched tension(DENT) test were conducted to characterize the low strain rheological and high strain ductile fracture properties of the warm mix asphalt. In addition, Fourier transform infrared spectroscopy(FTIR) test was conducted to compare the molecular structure of asphalt before and after the addition of warming agent. The test results show that addition of 3% Sasobit and above can significantly reduce the low strain rheological properties and high strain ductile fracture properties of asphalt. ET-3100 can slightly reduce the ductile fracture resistance of asphalt, and this the effect has nothing to do with the amount of ET-300. The FTIR test results show that warming agent ET-3100 slows down the aging degree of asphalt, which is manifested by the reduction of hydroxyl C=O and sulfoxide S=O.

Key words: road engineering, warm mix asphalt, fracture property, low-temperature performance, extended bending beam rheometer test, double edge notched tension test

CLC Number: 

  • U414

Table 1

Basic performance test results of asphalt binders"

沥青25 ℃针入度/0.1 mm15 ℃延度/cm软化点/℃PG分级中温分级
70#79.3>15042.364-2222
70#+1%A60.2>15052.064-2222
70#+2%A52.014559.670-2222
70#+3%A47.513569.976-2225
70#+0.2%B81.3>15041.864-2222
70#+0.5%B81.7>15041.064-2222
70#+0.8%B83.6>15038.964-2222

Fig.1

DENT specimens at different ligament width"

Fig.2

Force-displacement curve ofDENT test for asphalt"

Table 2

Comparison of low-temperature PG"

沥青养护时间/hTC(S)/℃TC(m)/℃低温连续分级温度/℃低温PG分级
70#1-28.7-27.2-27.2-22
2-25.4-25.5-25.4-22
72-24.0-24.9-24.0-22
70#+1%A1-28.4-27.0-27.0-22
2-24.6-25.2-24.6-22
72-23.5-24.6-23.5-22
70#+2%A1-27.4-26.5-26.5-22
2-24.3-25.3-24.3-22
72-22.7-24.1-22.7-22
70#+3%A1-25.3-26.2-25.3-22
2-22.7-24.0-22.7-22
72-21.0-23.7-21.0-16

Fig.3

Grade loss andΔTCof asphalts"

Table 3

DENT test results for asphalts"

沥青we/(kJ·m-2β?wp/(kJ·m-3R2CTOD
70#16.500.3650.997717.41
70#+1%A14.130.4000.958313.43
70#+2%A13.130.4290.974010.70
70#+3%A12.740.4560.93799.28
70#+0.2%B15.490.3480.990816.26
70#+0.5%B12.790.2690.962516.62
70#+0.8%B13.300.3290.964716.32

Fig.4

FTIR test results of asphalts"

Table 4

Calculation results of CI and SI"

沥青指标沥青状态
原样RTFOTPAV
70#CI0.0140.0170.018
SI0.0550.0850.125
70#+1%ACI0.0150.0170.019
SI0.0680.0980.143
70#+2%ACI0.0140.0180.019
SI0.1040.1320.189
70#+3%ACI0.0140.0170.019
SI0.1300.1740.227
70#+0.2%BCI0.0120.0140.016
SI0.0500.0790.117
70#+0.5%BCI0.0060.0090.011
SI0.0430.0550.099
70#+0.8%BCI0.0020.0060.007
SI0.0340.0380.081
1 丁鹏, 吉泽中, 徐波, 等. 温拌成品高黏沥青及其混合料性能研究[J]. 重庆理工大学学报: 自然科学版, 2018, 32(4): 127-134.
Ding Peng, Ji Ze-zhong, Xu Bo, et al. Study on properties of warm mix finished high viscosity asphalt and mixtures[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(4): 127-134.
2 王黎明, 谭忆秋, 石振武, 等. 基于冲击贯入法的温拌沥青混合料合理压实温度的确定[J]. 吉林大学学报: 工学版, 2013, 43(6): 1494-1499.
Wang Li-ming, Tan Yi-qiu, Shi Zhen-wu, et al. Determination of warm-mix asphalt reasonable compaction temperature range by impact penetration test [J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(6): 1494-1499.
3 张苛, 张争奇. 基于温拌沥青性能的不同温拌剂效能评价[J]. 材料科学与工程学报, 2016, 34(3): 389-394.
Zhang Ke, Zhang Zheng-qi. Efficiency evaluation of different warm-mixed agents based on warm-mixed asphalt performance[J]. Journal of Materials Science and Engineering, 2016, 34(3): 389-394.
4 樊亮, 胡家波, 李永镇, 等. 不同温拌剂对沥青粘弹性、疲劳性能的影响 [J]. 武汉理工大学学报: 交通科学与工程版, 2015, 39(2): 320-324.
Fan Liang, Hu Jia-bo, Li Yong-zhen, et al. Impact of different warm-mixing additives on viscoelasticity and fatigue properties of asphal [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(2):320-324.
5 詹小丽, 张肖宁, 谭忆秋, 等. 改性沥青低温性能评价指标研究[J].公路交通科技, 2007, 24(9): 42-45.
Zhan Xiao-li, Zhang Xiao-ning, Tan Yi-qiu, et al. Study on evaluation index of low temperature performance of modified asphalt[J]. Journal of Highway and Transportation Research, 2007, 24(9): 42-45.
6 Wu C F, Zeng M L. Effects of additives for warm mix asphalt on performance grades of asphalt binders[J]. Journal of Testing and Evaluation, 2018, 193: 87-96.
7 乐金朝, 李威. Sasobit改性沥青技术性能研究[J]. 郑州大学学报: 理学版, 2018, 50(1): 107-115.
Yue Jin-chao, Li Wei. Study on performance of Sasobit modified asphalt binder[J]. Journal of Zhengzhou University (Natural Science Edition), 2018, 50(1): 107-115.
8 熊锐, 乔宁, 褚辞, 等. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报: 工学版, 2020, 50(1): 183-190.
Xiong Rui, Qiao Ning, Chu Ci, et al. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 183-190.
9 郑传峰, 佴磊, 张力, 等. SEAM改性沥青流变特性[J]. 吉林大学学报: 工学版, 2011, 41(5): 1284-1289.
Zhen Chuan-feng, Nie Lei, Zhang Li, et al. Rheological properties of SEAM modified asphalt binder[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1284-1289.
10 Andriescu A, Hesp S A M, Youtcheff J S. Essential and plastic works of ductile fracture in asphalt binders[J]. Transportation Research Record Journal of the Transportation Research Board, 2004, 1875(1): 1-7.
11 Tabatabaee H A, Velasquez R, Bahia H U. Modeling thermal stress in asphalt mixtures undergoing glass transition and physical hardening[J]. Transportation Research Record Journal of the Transportation Research Board, 2012,4: 106-114.
12 AA―16. Provisional standard method of test for determination of performance grade of physical sged ssphalt using extended bending beam rheometer(BBR) method[S].
13 Broberg K B. On stable crack growth[J]. J Mech Phys Solids, 1975, 23(3): 215-237.
14 Mai Y W, Cotterell B. On the essential work of ductile fracture in polymers[J]. International Journal of Fracture, 1986, 32(2): 105-125.
15 谭忆秋, 符永康, 纪伦, 等. 橡胶沥青低温性能评价指标[J]. 哈尔滨工业大学学报, 2016, 48(3): 66-70.
Tan Yi-qiu, Fu Yong-kang, Ji Lun, et al. Rubber asphalt low temperature performance evaluation index [J]. Journal of Harbin Institute of Technology,2016,48(3):66-70.
16 Anderson R M, King G N, Hanson D I, et al. Evaluation of the relationship between asphalt binder properties and non-load related cracking[J]. Asphalt Paving Technology, 2011, 80(4): 615-663.
17 AA―16. Standard practice for design considerations when using reclaimed zsphalt shingles in asphalt mixtures [S].
18 罗浩原, 欧阳铖霏, 冷慧康, 等. 基于临界裂纹尖端位移的沥青抗疲劳性能评价[J]. 建筑材料学报, 2020, 23(4): 969-977.
Luo Hao-yuan, Ouyang Cheng-fei, Leng Hui-kang, et al. Fatigue performance evaluation of asphalt binder based on crack tip opening displacement[J]. Journal of Building Materials, 2020, 23(4): 969-977.
19 罗浩原, 邱延峻, 苏婷, 等. 自研环保无机硅胶温拌剂的综合性能鉴评[J/OL].[2019-11-12].
20 马育, 何兆益, 何亮, 等. 温拌橡胶沥青的老化特征与红外光谱分析[J]. 公路交通科技, 2015, 32(1): 13-18.
Ma Yu, He Zhao-yi, He Liang, et al. Analysis on aging characteristics and infrared spectroscopy of warm mix asphalt-rubber[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 13-18.
21 耿九光. 沥青老化机理及再生技术研究[D]. 西安: 长安大学公路学院, 2009.
Geng Jiu-guang. Study on the aging mechanism and recycling technique of asphalt[D]. Xi'an: School of Highway, Chang'an University, 2009.
[1] Yu FANG,Li-jun SUN. Urban bridge performance decay model based on survival analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 557-564.
[2] Wen-ting DAI,Ze-hua SI,Zhen WANG,Qi WANG. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
[3] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[4] Ping WAN,Chao-zhong WU,Xiao-feng MA. Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[5] Rui XIONG,Ning QIAO,Ci CHU,Fa YANG,Bo-wen GUAN,Yan-ping SHENG,Dong-yu NIU. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 183-190.
[6] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[7] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[8] Yun-long ZHANG,Liu-guang ZHOU,Jing WANG,Chun-li WU,Xiang LYU. Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1531-1538.
[9] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[10] Xiao⁃zhen LI,Jun⁃zhe LIU,Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI. Effect of carbonation on nitrite ion distribution in cement paste [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1162-1168.
[11] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[12] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[13] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[14] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[15] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!