Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2096-2107.doi: 10.13229/j.cnki.jdxbgxb20200591

Previous Articles    

Eccentric compression behavior of bamboo⁃plywood and steel⁃tube dual⁃confined dust⁃powder concrete columns

Jing ZHOU1,2(),Ya-jun LI1,Wei-feng ZHAO1,Zong-jian LUO1,Guo-bin BU3   

  1. 1.College of Civil Engineering and Mechanics,Xiangtan University,Xiangtan 411105,China
    2.State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou 510640,China
    3.College of Civil Engineering,Hunan University of Technology,Zhuzhou 412007,China
  • Received:2020-06-27 Online:2021-11-01 Published:2021-11-15

Abstract:

A new type of Bamboo-plywood and Steel-tube dual-confined Dust-powder Concrete Column (BSDCC) was proposed for integrated utilization of industrial solid waste and bamboo material. 12 BSDCC specimens were executed to eccentric compression tests. The compressive destruction mechanism was analyzed based on the whole process of surface damage of specimens, the failure modes of thin-walled steel tubes, the load-displacement and load-strain curves. A formula for calculating the bearing capacity of BSDCC subjected to eccentric compression was proposed through nonlinear regression analysis. The test results show that the eccentric compression failure of BSDCC is mainly caused by the cracking failure of bamboo-plywood between binding bars in the middle of the column body and the local buckling failure of bamboo-plywood materials. The ultimate load of specimens is not only related to eccentricity, slender-length ratio, sectional size and wall thickness of steel-tube, but is also affected by the spacing ratio of binding bars. Steel-tube filled with dust-powder concrete can effectively change the ultimate failure mode and significantly improve the ultimate bearing capacity of BSDCC specimens. Compared with the ultimate compressive stress of SBCCB, the ultimately compressive stress of BSDCC is increased by 25% averagely.

Key words: civil engineering, bamboo-plywood, thin-walled steel tube, composite column, eccentric compression, ultimate bearing capacity

CLC Number: 

  • TU398.9

Table 1

Mechanical properties of steel tubes and binding bars"

钢材屈服强度/MPa极限强度/MPa弹性模量/GPa屈服应变/%
钢管3504251900.179
拉杆2604121930.133

Table 2

Parameters of specimens"

试件编号λl/mmB×B/(mm×mm)b×b×t)/(mm×mm×mm)e/mme0ρs/mmr
EC181120140×14080×80×200.000.0322802.0
EC281120140×14080×80×2300.210.0322802.0
EC381120140×14080×80×2600.430.0322802.0
EC4121680140×14080×80×2300.210.0322802.0
EC5162240140×14080×80×2300.210.0322802.0
EC6121680140×14060×60×2300.210.0242802.0
EC7121680140×140100×100×2300.210.0402802.0
EC8121680140×14080×80×3300.210.0162802.0
EC9121680140×14080×80×1300.210.0482802.0
EC108800100×10080×80×2600.600.0622502.5
EC1181120140×14080×80×2600.430.0323502.5
EC1281440180×18080×80×2600.330.0194502.5

Fig.1

Sectional composition"

Fig.2

Test device"

Fig.3

Arrangement of strain gauges"

Fig.4

Damage modes of specimens"

Fig.5

Damage modes of inner steel tubes"

Fig.6

Damage process of EC4"

Fig.7

Curves of load-displacement"

Fig.8

Load-strain curve for bambooplywood and steel tubes"

Fig.9

Comparison of displacement ductility factor"

Table 3

Displacement ductility factor"

试件编号屈服点峰值点极限点延性系数μ

Fy

/kN

Δy

/mm

Fp

/kN

Δp

/mm

Fu

/kN

Δu

/mm

EC1526.017.49541.48.12460.199.951.33
EC2323.837.63347.29.71295.1210.381.36
EC3219.767.89231.210.12195.5212.541.59
EC4246.6811.05248.811.25211.4816.441.49
EC5217.1210.42229.113.72194.7420.281.95
EC6286.8311.65292.914.15248.9718.641.60
EC7297.4711.02309.814.43263.3318.211.65
EC8219.7411.53233.615.86198.5619.841.72
EC9330.9213.85339.917.47288.9219.501.41
EC10115.946.20128.88.80109.489.171.48
EC11242.959.50281.112.47238.9416.101.69
EC12406.5213.98442.918.31376.4621.421.53

Table 4

Comparison for ultimate compressive stress and ultimate moment"

数据来源试件编号偏心距/mm长细比λ截面积/mm2

峰值载荷

/kN

峰值点处挠度值/mm

极限弯矩

/(kN·m)

极限压应力

/MPa

平均极限压应力/MPa
SBCCB28ZP1208.166 400105.515.63.7616.4812.14
ZP2308.5010 000123.322.76.5012.33
ZP3408.7514 400135.216.07.579.39
ZP4309.796 40099.911.94.1915.61
ZP54010.2010 000115.46.75.3911.54
ZP62010.5014 400147.325.66.7210.23
ZP74011.436 40087.720.85.3313.70
ZP82011.9010 000115.418.64.4511.54
ZP93012.2514 400121.212.65.168.42
BSDCCEC108.0019 600541.46.73.6327.6215.20
EC2308.0019 600347.215.515.8017.71
EC3608.0019 600231.212.316.7211.80
EC43012.0019 600248.816.411.5412.69
EC53016.0019 600229.130.713.9111.69
EC63012.0019 600292.925.516.2614.94
EC73012.0019 600309.824.716.9515.81
EC83012.0019 600233.628.213.6011.92
EC93012.0019 600339.930.920.7017.34
EC10608.0010 000128.811.69.2212.88
EC11608.0019 600281.118.021.9314.34
EC12608.0032 400442.927.438.7113.67

Fig.10

Comparison of load-bearing stress anddeformability"

Fig.11

Peaking axial load are comparedwith the tested and predicted"

Fig.12

Proportion of bearing capacity"

1 Dehwah H A F.Mechanical properties of self-compacting concrete incorporating quarry dust powder,silica fume or fly ash[J]. Construction and Building Materials, 2011, 26(1):547-551.
2 Saghafi B, Nageim H A, Atherton W. Mechanical behavior of a new base material containing high volumes of limestone waste dust, PFA, and APC residues[J]. Journal of Materials in Civil Engineering, 2013, 25(4):450-461.
3 Kandolkar S, Mandal J. Behavior of reinforced stone dust walls under strip loading[J]. Advances in Civil Engineering Materials, 2015, 4(1):1-30.
4 Singh S, Nagar R, Agrawal V. A review on properties of sustainable concrete using granite dust as replacement for river sand[J]. Journal of Cleaner Production, 2016, 126(10):74-87.
5 Febin G K, Abhirami A, Vineetha A K, et al. Strength and durability properties of quarry dust powder incorporated concrete blocks[J]. Construction and Builing Materials, 2019, 228:1-9.
6 郑大为, 韩红静, 郝连学. 回收粉尘的掺量对水泥稳定碎石基层的影响研究[J]. 硅酸盐通报, 2017, 36(7):2476-2480, 2491.
Zheng Da-wei, Han Hong-jing, Hao Lian-xue. Influence of the amount of recycled dust on cement stabilized crushed stone base[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7):2476-2480, 2491.
7 Xiao Y, Chen G, Feng L. Experimental studies on roof trusses made of glubam[J]. Materials and Structures, 2014, 47(11):1879-1890.
8 Xu Q F, Chen L Z, Harries K A. et al. Combustion performance of engineered bamboo from cone calorimeter tests[J]. European Journal of Wood and Wood Products, 2017, 75(2):161-173.
9 Huang D S, Bian Y L, Zhou A P, et al. Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from Phyllostachys[J].Construction and Building Materials, 2015, 77:130-138.
10 马丽, 周凌, 何慧, 等. 竹粉高温蒸煮对竹粉/ABS木塑复合材料性能的影响[J]. 吉林大学学报:工学版, 2011, 41():205-209.
Ma Li, Zhou Ling, He Hui, et al. Effect on properties of bamboo/ABS composites by high-temperature cooking of bamboo[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(Sup.2):205-209.
11 Yu D, Tan H, Ruan Y. A future bamboo-structure residential building prototype in China:life cycle assessment of energy use and carbon emission[J]. Energy and Buildings, 2011, 43(10):2638-2646.
12 Sharma B, Gatoo A, Bock M, et al. Engineered bamboo for structural applications[J]. Construction and Building Materials, 2015, 81:66-73.
13 李海涛, 张齐生, 吴刚, 等. 竹集成材研究进展[J]. 林业工程学报, 2016, 1(6):10-16.
Li Hai-tao, Zhang Qi-sheng, Wu Gang, et al. A review on development of laminated bamboo lumber[J]. Journal of Forestry Engineering, 2016, 1(6):10-16.
14 肖岩, 杨瑞珍, 单波, 等. 结构用胶合竹力学性能试验研究[J]. 建筑结构学报, 2012, 33(11):150-157.
Xiao Yan, Yang Rui-zhen, Shan Bo, et al. Experimental research on mechanical properties of glubam[J]. Journal of Building Structures, 2012, 33(11):150-157.
15 Sharma B, Gatóo A, Ramage M H. Effect of processing methods on the mechanical properties of engineered bamboo[J]. Construction and Building Materials, 2015, 83:95-101.
16 郭楠, 张平阳, 左煜, 等. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报: 工学版, 2017, 47(3):778-788.
Guo Nan, Zhang Ping-yang, Zuo Yu, et al. Bending performance of glue-lumber beam reinforced by bamboo plyboard[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3):778-788.
17 Yu W K, Chung K F, Chan S L. Axial buckling of bamboo columns in bamboo scaffolds[J]. Engineering Structures, 2005, 27(1):61-73.
18 Lugt P, Dobbelsteen A A J F, Janssen J J A. An environmental,economic and practical assessment of bamboo as a building material for supporting structures[J]. Construction and Builing Materials, 2006, 20(9):648-656.
19 He M J, Li Z,Sun Y L, et al. Experimental investigations on mechanical properties and column buckling behavior of structural bamboo[J]. Structural Design of Tall and Special Buildings, 2015, 24(7):491-503.
20 Tian L M, Kou Y F, Hao J P. Axial compressive behaviour of sprayed composite mortar-original bamboo composite columns[J]. Construction and Building Materials, 2019, 215:726-736.
21 Li H, Su J W, Zhang Q, et al. Mechanical performance of laminated bamboo column under axial compression[J]. Composites Part B: Engineering, 2015, 79:374-382.
22 Li H T, Liu R, Lorenzo R, et al. Eccentric compression properties of laminated bamboo columns with different slenderness ratios[J]. Proceedings of the Institution of Civil Engineers:Structures and Buildings, 2019, 172(5):315-326.
23 魏洋, 周梦倩, 袁礼得. 重组竹柱偏心受压力学性能[J]. 复合材料学报,2016,33(2):379-385.
Wei Yang, Zhou Meng-qian, Yuan Li-de. Mechanical performance of glulam bamboo columns under eccentric loading[J]. Acta Materiae Compositae Sinica, 2016, 33(2):379-385.
24 Xiao Y, Zhou Q, Shan B. Design and construction of modern bamboo bridges [J]. Journal of Bridge Engineering, 2010, 15(5):533-541.
25 Li H T, Chen G, Zhang Q S, et al. Mechanical properties of laminated bamboo lumber column under radial eccentric compression[J]. Construction and Building Materials, 2016, 121:644-652.
26 李冀, 陈思甜, 孟旭. 箍筋增强型胶合竹柱抗压试验[J]. 林业科技开发, 2014, 28(4):113-115.
Li Ji, Chen Si-tian, Meng Xu. Compression test of stirrup reinforced glued bamboo columns[J]. China Forestry Science and Technology, 2014, 28(4): 113-115.
27 赵卫锋, 张武东, 周靖, 等. 薄壁方型钢管/竹胶板组合空芯柱轴心抗压性能[J]. 农业工程学报, 2014, 30(6):37-45.
Zhao Wei-feng, Zhang Wu-dong, Zhou Jing, et al. Axial compression behavior of square thin-walled steel tube/laminated bamboo composite hollow column [J]. Transactions of Chinese Society of Agricultural Engineering, 2014, 30(6):37-45.
28 赵卫锋, 谷伟, 周靖, 等. 带约束拉杆钢管/竹胶板组合空芯短柱的偏心抗压性能[J]. 农业工程学报, 2016, 32(15):75-82.
Zhao Wei-feng, Gu Wei, Zhou Jing, et al. Eccentric compression behavior of thin-walled steel-tube/bamboo-plywood assembling short hollow column with binging bars[J]. Transactions of Chinese Society of Agricultural Engineering, 2016, 32(15):75-82.
29 Zhao W F, Yang B, Zhou J. Axial compressive creep behaviour of a square steel tube/bamboo plywood composite column with binding bars[J]. Wood Research, 2019, 64(2):223-236.
30 解其铁, 张王丽, 蒋天元, 等. 钢-竹组合柱轴心受压性能的试验研究[J]. 工程力学, 2012, 29():221-225.
Xie Qi-tie, Zhang Wang-li, Jiang Tian-yuan, et al. Experimental study on performance of steel-bamboo composite column under axial compression[J]. Engineering Mechanics, 2012, 29(Sup.2):221-225.
31 . 金属材料室温拉伸试验方法[S].
32 . 木结构试验方法标准[S].
33 Park R, Priestley M J N, Gill W D.Ductility of square-confined concrete columns[J]. Journal of the Structural Division, 1982,108(4): 929-950.
34 . 木结构设计标准[S].
[1] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[2] Guang-tai ZHANG,Lu-yang ZHANG,Guo-hua XING,Yin-long CAO,Bao YI. Seismic performance of steel⁃polypropylene hybrid fiber reinforced concrete shear wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 946-955.
[3] Liu LIU,Wei-xing FENG. Field measurement and calculation analysis of tunnel shield tunnel construction based on NNBR model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 245-251.
[4] Wei-xiao XU,Yang CHENG,Wei-song YANG,Jia-chang JU,De-hu YU. Quasi-static test of RC frame-seismic wall dual structural system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 268-277.
[5] De-shan SHAN,Xiao ZHANG,Xiao-yu GU,Qiao LI. Analytical method for elongation of stayed-cable with catenary configuration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 217-224.
[6] Su-duo XUE,Jian LU,Xiong-yan LI,Ren-jie LIU. Influence of grid⁃jumping arrangement on static and dynamic performance of annular crossed cable⁃truss structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1687-1697.
[7] Bo WANG,Yuan-zheng DONG,Li-xin DONG. Calculation of basic wind pressure based on short⁃term wind speed data [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1739-1746.
[8] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[9] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[10] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[11] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[12] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[13] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[14] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[15] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!