Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 268-277.doi: 10.13229/j.cnki.jdxbgxb20191138

Previous Articles    

Quasi-static test of RC frame-seismic wall dual structural system

Wei-xiao XU1,2(),Yang CHENG1,2,Wei-song YANG1,2,Jia-chang JU1,2,De-hu YU1,2   

  1. 1.School of Civil Engineering,Qingdao University of Technology,Qingdao 266033,China
    2.Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone,Qingdao University of Technology,Qingdao 266033,China
  • Received:2019-12-15 Online:2021-01-01 Published:2021-01-20

Abstract:

In order to study the seismic performance of two different forms of structures, i.e. "functional integration" and "functional separation" in the Reinforce Concrete (RC) frame-seismic wall dual structure system, quasi-static tests of two 1/3 scale frame-seismic wall specimens with two single-story and two-bay were carried out. The damage development, hysteretic behavior, stiffness degradation, energy dissipation capacity, ductility and other seismic behaviors of the seismic wall were investigated as the wall mainly bears the lateral resistance but bears a small part of the vertical load, and as the wall bears both the lateral resistance and the vertical load. The performance of the specimens was also studied by ABAQUS finite element software simulation, and the results are consistent with the test results.The results of this study show that the structure has better ductility, energy dissipation capacity and damage development process when the load-bearing function and the anti-lateral function of the seismic wall are separated.

Key words: civil engineering, RC frames, dual structural system, functional separation, quasi-static test

CLC Number: 

  • TU375.4

Fig.1

Plan of prototype"

Fig.2

Dimensions of specimens"

Fig.3

Design details of specimens"

Table 1

Mechanical properties of reinforcements"

钢筋直径/mm屈服强度/MPa极限强度/MPa
6452622
8414556

Fig.4

Loading patterns of specimens"

Fig.5

Loading scheme of test"

Fig.6

Measurement layout of specimens"

Fig.7

Damage mode of beams"

Fig.8

Damage mode of seismic walls"

Fig.9

Hysteretic loops of specimens"

Fig.10

Skeleton curves of specimens"

Fig.11

Stiffness degeneration of specimens"

Table 2

Comparisons of characteristic points and ductility factor"

参数FW1FW2
开裂位移/mm1.981.98
开裂荷载/kN50.7353.69
屈服位移/mm9.999.14
屈服荷载/kN151.07155.22
极限位移/mm2519.83
极限荷载/kN182.39182.55
破坏位移/mm34.1025.34
破坏荷载/kN155.03155.17
延性系数3.412.77

Fig.12

Energy dissipation of specimens"

Table 3

Energy dissipation capacity of specimens kN·mm"

试件

编号

耗能能力总耗能
屈服极限破坏
FW1592.003370.784531.8623397.17
FW2735.762734.253057.1017421.10

Fig.13

Uniaxial stress-strain relationship under reciprocating loading"

Fig.14

Comparisons of hysteretic loops"

Fig.15

Comparisons of skeleton curves"

1 叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究:汶川地震极震区几个框架结构震害案例分析[J]. 建筑结构学报, 2009, 30(6): 67-76.
Ye Lie-ping, Lu Xin-zheng, Zhao Shi-chun, et al. Seismic collapse resistance of RC frame structures: case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchun Earthquake[J]. Journal of Building Structures, 2009, 30(6): 67-76.
2 陆新征, 林旭川, 田源, 等. 汶川、芦山、鲁甸地震极震区地面运动破力对比及其思考[J]. 工程力学, 2014, 31(10): 1-7, 20.
Lu Xin-zheng, Lin Xu-chuan, Tian Yuan, et al. Comparison and discussion on destructive power of the ground motions recorded in the hardest-hit regions of Wenchuan, Lushan and Ludian earthquakes[J]. Engineering Mechanics, 2014, 31(10): 1-7, 20.
3 许卫晓. 阶梯墙框架结构抗震性能及设计方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2014.
Xu Wei-xiao. Study on the seismic performance and design of stepped wall-frame structure[D]. Harbin: Institute of Engineering Mechanics,CEA, 2014.
4 陈以一, 王伟, 赵宪忠. 钢结构体系中节点耗能能力研究进展与关键技术[J]. 建筑结构学报, 2010, 31(6): 81-88.
Chen Yi-yi, Wang Wei, Zhao Xian-zhong. Development and key technical issues on energy dissipation capacity of joints in steel structures[J]. Journal of Building Structures, 2010, 31(6): 81-88.
5 Architectural Institute of Japan. Evaluation Procedure for Performance-based Seismic Design of Buildings-calculation of rResponse and Limit Strength, Energy Balance Based Seismic Resistant Design, Time History Response Analysis[M]. Tokyo, Japan:Architectural Institute of Japan, 2009.
6 Lin P C, Takeuchi T, Matsui R. Optimal design of multiple damped-outrigger system incorporating buckling-restrained braces[J]. Engineering Structures, 2019, 194: 441-457.
7 Genna F. On the sensitivity of finite element results in the calculation of the lateral thrust for all-steel buckling-restrained braces[J]. Engineering Structures, 2019, 194: 66-76.
8 潘鹏, 邓开来, 胥晓光, 等. GFRP-钢屈曲约束支撑力学性能试验研究[J]. 土木工程学报, 2014, 47(12): 1-8.
Pan Peng, Deng Kai-lai, Xu Xiao-guang, et al. Experimental study on mechanical behavior of GFRP-steel buckling-restrained braces[J]. China Civil Engineering Journal, 2014, 47(12): 1-8.
9 Ajrab J J, Pekcan G, Mander J B. Rocking wall-framestructures with supplemental tendon systems[J]. Journal of Structural Engineering, 2004, 130(6): 895-903.
10 曲哲, 和田章, 叶列平, 等. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9): 11-19.
Qu Zhe, WADA Akira, Ye Lie-ping, et al. Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011, 32(9): 11-19.
11 张富文, 李向民, 许清风, 等. 框架-摇摆墙结构抗震性能试验研究[J]. 建筑结构学报, 2015, 36(8): 73-81.
Zhang Fu-wen, Li Xiang-min, Xu Qing-feng, et al. Experimental study on seismic behavior of frame-rocking wall structure[J]. Journal of Building Structures, 2015, 36(8): 73-81.
12 陈以一. 功能集成型结构的抗震设计[C]∥第十一届中日建筑结构技术交流会, 北京, 2015: 303-304.
13 国明超, 栾曙光, 鞠杨, 等. 钢筋混凝土带翼墙短柱抗震性能研究[J]. 建筑结构学报, 1996, 17(3): 32-42.
Guo Ming-chao, Luan Shu-guang, Ju Yang, et al. Study on seismic behavior of reinforced concrete short column with wing wall[J]. Journal of Building Structures, 1996, 17(3): 32-42.
14 张鹏程, 袁兴仁. 框架结构增设支撑与增设翼墙抗震加固方案对比[J]. 土木工程学报, 2010, 43(): 442-446.
Zhang Peng-cheng, Yuan Xing-ren. Steel brace and wing-wall applicating for seismic strengthening of frame building[J]. China Civil Engineering Journal, 2010, 43(Sup.1): 442-446.
15 张令心, 王财权, 刘洁平. 翼墙加固方法对框架结构抗震性能的影响分析[J]. 土木工程学报, 2012, 45(): 16-21.
Zhang Ling-xin, Wang Cai-quan, Liu Jie-ping. Analysis of the influence on structural seismic capability by wing wall strengthening method[J]. China Civil Engineering Journal, 2012, 45(Sup.2): 16-21.
16 Yang Wei-song, Guo Xun, Xu Wei-xiao, et al. Wing walls for enhancing the seismic performance of reinforced concrete frame structures[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 411-423.
17 熊仲明, 史庆轩, 王社良, 等. 钢筋混凝土框架-剪力墙模型结构试验的滞回反应和耗能分析[J]. 建筑结构学报, 2006, 27(4): 89-95.
Xiong Zhong-ming, Shi Qing-xuan, Wang She-liang, et al. Hysteretic response and energy dissipation of a model frame-shear wall structure[J]. Journal of Building Structures, 2006, 27(4): 89-95.
18 Xu Wei-xiao, Sun Jing-jiang, Yang Wei-song, et al. Shaking table comparison test and associate study of stepped wall-frame structure[J]. Earthquake Engineering and Earthquake Vibration, 2014, 13(3): 471-485.
19 杨伟松, 郭迅, 许卫晓, 等. 翼墙-框架结构振动台试验研究及有限元分析[J]. 建筑结构学报, 2015, 36(2): 96-103.
Yang Wei-song, Guo Xun, Xu Wei-xiao, et al. Shaking table test and finite element analysis of wing wall-frame structure[J]. Journal of Building Structures, 2015, 36(2): 96-103.
20 Qu Zhe. Predicting nonlinear response of an RC bridge pier subject to shake table motions[C]∥The 9th International Conference on Urban Earthquake Engineering(9CUEE), Tokyo, Japan, 2012: 1717-1724.
21 庄茁, 由小川, 廖剑辉, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009.
[1] Liu LIU,Wei-xing FENG. Field measurement and calculation analysis of tunnel shield tunnel construction based on NNBR model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 245-251.
[2] De-shan SHAN,Xiao ZHANG,Xiao-yu GU,Qiao LI. Analytical method for elongation of stayed-cable with catenary configuration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 217-224.
[3] Su-duo XUE,Jian LU,Xiong-yan LI,Ren-jie LIU. Influence of grid⁃jumping arrangement on static and dynamic performance of annular crossed cable⁃truss structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1687-1697.
[4] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[5] Bo WANG,Yuan-zheng DONG,Li-xin DONG. Calculation of basic wind pressure based on short⁃term wind speed data [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1739-1746.
[6] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[7] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[8] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[9] Jun ZHANG,Cheng QIAN,Chun⁃yan GUO,Yu⁃jun QIAN. Dynamic design of building livability based on multi⁃source spatiotemporal data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1169-1173.
[10] Ning⁃hui LIANG,Qing⁃xu MIAO,Xin⁃rong LIU,Ji⁃fei DAI,Zu⁃liang ZHONG. Determination of fracture toughness and softening traction⁃separation law of polypropylene fiber reinforced concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[11] Lei ZHANG,Bao⁃guo LIU,Zhao⁃fei CHU. Model test of the influence on shield shaft owing to water loss settlement of deep sandstone aquifer layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 788-797.
[12] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[13] NI Ying-sheng, SUN Qi-xin, MA Ye, XU Dong. Calculation of capacity reinforcement about composite box girder with corrugated steel webs based on tensile stress region theory [J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[14] WANG Teng, ZHOU Ming-ru, MA Lian-sheng, QIAO Hong-xia. Fracture grouting crack growth of collapsible loess based on fracture theory [J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[15] ZHENG Yi-feng, MAO Jian, LIANG Shi-zhong, ZHENG Chuan-feng. Negative skin friction of pile foundation considering soil consolidation in high fill site [J]. 吉林大学学报(工学版), 2017, 47(4): 1075-1081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!