Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (7): 1696-1708.doi: 10.13229/j.cnki.jdxbgxb20210109

Previous Articles    

Closed-loop control of traveling attitude of hexapod robot based on equivalent connecting link model

Ang LI1(),Hong-yuan YANG1,2,3(),Xiao-meng LEI1,Kai-wen SONG1,Cheng-hui QIAN1   

  1. 1.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130021,China
    2.National Engineering Research Center of Geophysics Exploration Instruments,Jilin University,Changchun 130021,China
    3.Key Laboratory of Geo?exploration Instruments,Ministry of Education,Jilin University,Changchun 130021,China
  • Received:2021-02-01 Online:2022-07-01 Published:2022-08-08
  • Contact: Hong-yuan YANG E-mail:liang20@jlu.edu.cn;yang_hy@jlu.edu.cn

Abstract:

In order to solve the problem of real-time independent attitude planning of hexapod robot in omnidirectional marching, the coupling reason between the robot's motion planning and attitude planning was analyzed. A model based on the idea of body equivalent linkage was proposed, and the omnidirectional triangular gait and attitude control were realized based on the model. The experimental results of the prototype show that the control algorithm based on this model can be solved in real time in STM32F407 microcontroller, and the adjustment time of closed-loop attitude control is about 80% shorter than that of the traditional dual-PI control method.

Key words: automatic control technology, hexapod robot, fuselage equivalent link, closed-loop attitude control, multi-foot coordinated control, omnidirectional movement, real-time solution

CLC Number: 

  • TP242

Fig.1

Body coordinate system and reference coordinate system"

Fig.2

Single foot joint and connecting rod"

Fig.3

Footprint planned in the fuselage coordinate system will be distorted in reference coordinate system"

Fig.4

Body equivalent link"

Fig.5

Virtual link connected to foot 1"

Table 1

D-H parameter table"

iθidiai-1αi-1
1θ1000
2θ200π/2
3θ30d3-π/2
4θ40d4π/2
5θ50d50
600d60

Table 2

Each foot CPi table"

足号CPi
1CP1=5.87512.001T
2CP2=-5.87512.001T
3CP3=9001T
4CP4=-9001T
5CP5=-5.875-12.001T
6CP6=-5.875-12.001T

Fig.6

Trajectory mixing diagram"

Fig.7

Relativeity of motion"

Fig.8

Translation track and rotation track"

Fig.9

Right front foot track in body coordinate system"

Fig.10

Right front foot coordinates in the body coordinate system during simulation"

Fig.11

Right joint angle of the right forefoot during simulation"

Fig.12

Right front foot track in body coordinate system"

Fig.13

Right front foot track under {2}"

Fig.14

Body posture, virtual joints and physical joint corners of right forefoot during simulation"

Fig.15

Prototype"

Fig.16

Control system block diagram"

Fig.17

Slope static test"

Fig.18

Attitude angle during static test of slope"

Fig.19

Crossing the undulating road test"

Fig.20

Attitude angle in test of undulating pavement"

Fig.21

Pitch angle in undulating pavement test with and without attitude closed-loop control system"

Fig.22

Uphill test diagram"

Fig.23

Uphill test"

Fig.24

Pitch angle value record in uphill test"

1 王国彪,陈殿生,陈科位,等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13): 27-44.
Wang Guo-biao, Chen Dian-sheng, Chen Ke-wei, et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering, 2015, 51(13): 27-44.
2 Uchida Hiroaki. Six-degree-of-freedom control by posture control and walking directional control for six-legged robot[J]. Journal of Mechanical Engineering and Automation, 2017, 7(2): 30-45.
3 李满宏,张明路,张建华,等. 六足机器人关键技术综述[J]. 机械设计, 2015, 32(10): 1-8.
Li Man-hong, Zhang Ming-lu, Zhang Jian-hua, et al. A summary of key technologies of hexapod robot[J]. Mechanical Design, 2015, 32(10): 1-8.
4 Marko Bjelonic, Navinda Kottege, Timon Homberger, et al. Weaver: Hexapod robot for autonomous navigation on unstructured terrain[J]. Journal of Field Robotics, 2018, 35(7):1063-1079.
5 倪聪,杨崇倡,刘香玉,等.基于Klann连杆的球腿复合机器人的设计与研究[J].机器人,2020,42(4):436-447.
Ni Cong, Yang Chong-chang, Liu Xiang-yu, et al. Design and research on a ball-legged compound robot based on Klann linkage [J]. Robotics, 2020, 42 (4):436-447。
6 陈志华,汪首坤,王军政,等.电动并联六轮足机器人的运动驱动与多模态控制方法[J].机器人,2020,42(5):534-549.
Chen Zhi-hua, Wang Shou-kun, Wang Jun-zheng, et al. Motion drive and multi-mode control method of an electric parallel six [J]. Robotics, 2020, 42(5):534-549.
7 多南讯,吕强,林辉灿,等. 迈进高维连续空间: 深度强化学习在机器人领域中的应用[J]. 机器人, 2019, 41(2): 276-288.
Nan-xun Duo, Qiang Lyu, Lin Hui-can, et al. Stepping into high-dimensional continuous space: the application of deep reinforcement learning in the field of robotics [J]. Robotics, 2019, 41(2): 276-288.
8 杨泓渊,赵玉江,林君,等. 基于北斗的无缆存储式地震仪远程质量监控系统[J]. 吉林大学学报:工学版, 2015, 45(5): 1652-1657.
Yang Hong-yuan, Zhao Yu-jiang, Lin Jun, et al. Remote quality monitoring system based on Beidou-based cableless storage seismograph[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5): 1652-1657.
9 张磊,王哲. 六足仿生机器人的平稳姿态调整[J]. 机械科学与技术,2019,38(5):670-676.
Zhang Lei, Wang Zhe. Smooth attitude adjustment of hexapod bionic robot [J]. Mechanical Science and Technology,2019,38(5):670-676..
10 Faigl Jan, Čížek Petr. Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only[J]. Robotics and Autonomous Systems, 2019,116:136-147.
11 陈刚,金波,陈鹰. 基于速度逆运动学的六足步行机器人位姿闭环控制[J]. 农业机械学报, 2014, 45(5): 265-270.
Chen Gang, Jin Bo, Chen Ying. Position-posture closed-loop control of six-legged walking robot based on inverse velocity kinematics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 265-270.
12 Chen G, Jin B, Chen Y. Solving position-posture deviation problem of multi-legged walking robots with semi-round rigid feet by closed-loop control[J]. Journal of Central South University, 2014, 21(11): 4133-4141.
13 赵龙海,刘玉斌,赵杰,等. 自然地形下六足步行机器人基于落足点的位姿调整策略[J]. 江南大学学报:自然科学版, 2013, 12(4): 384-389.
Zhao Long-hai, Liu Yu-bin, Zhao Jie, et al. Pose Adjustment strategy based on the selected footholds for hexapod robot walking under natural terrain[J]. Journal of Jiangnan University (Natural Science Edition), 2013, 12(4): 384-389.
14 Sai Sesha B Veekshan Sree, Akshay Kumar B, B Mani Rajesh Reddy, et al. Dynamic stability algorithm for a Hexapod Robot[J]. Automation and Power Engineering, 2017(1):7-12.
15 宋孟军,张明路. 多足仿生移动机器人并联机构运动学研究[J]. 农业机械学报, 2012, 43(3):200-206.
Song Meng-jun, Zhang Ming-lu. Kinematics study of parallel mechanism of multi-foot bionic mobile robots[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(3): 200-206.
16 李满宏,张小俊,张建华,等. 面向给定轨迹的六足机器人多足协调控制[J]. 华中科技大学学报:自然科学版, 2015, 43(4):32-37.
Li Man-hong, Zhang Xiao-jun, Zhang Jian-hua, et al. Multi-foot coordinated control of hexapod robot for a given trajectory[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(4): 32-37.
17 孟健,李贻斌,李彬. 四足机器人对角小跑步态全方位 移动控制方法及其实现[J]. 机器人, 2015, 37(1):74-84.
Meng Jian, Li Yi-bin, Li Bin. Control method and its implementation of quadruped robot in omni-directional trotting gait[J]. Robot, 2015, 37(1): 74-84 .
18 徐小云,颜国正,丁国清. 微型六足仿生机器人及其三角步态的研究[J]. 光学精密工程, 2002(4): 392-396.
Xu Xiao-yun, Yan Guo-zheng, Ding Guo-qing. Study on miniature hexapod bionic robot and its triangular gait[J]. Optics and Precision Engineering, 2002(4): 392-396.
19 李满宏,张明路,张建华,等. 基于运动相对性的六足机器人机体运动规划[J]. 中国机械工程, 2015, 26(3): 313-318.
Li Man-hong, Zhang Ming-lu, Zhang Jian-hua, et al. Motion planning of hexapod robot based on motion relativity[J]. China Mechanical Engineering, 2015, 26(3): 313-318.
[1] Bin XIAN,Shi-jing ZHANG,Xiao-wei HAN,Jia-ming CAI,Ling WANG. Trajectory planning for unmanned aerial vehicle slung⁃payload aerial transportation system based on reinforcement learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2259-2267.
[2] Fang XU,Jun-ming ZHANG,Yun-feng HU,Ting QU,Yi QU,Qi-fang LIU. Lateral and longitudinal coupling real⁃time predictive controller for intelligent vehicle path tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2287-2294.
[3] Guang-xin HAN,Ju-le ZHAO,Yun-feng HU. Moving horizon linear quadratic regulator control for ball and plate system with input constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1982-1989.
[4] Shu-you YU,Huan CHANG,Ling-yu MENG,Yang GUO,Ting QU. Disturbance observer based moving horizon control for path following problems of wheeled mobile robots [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1097-1105.
[5] Ai-guo WU,Jun-qing HAN,Na DONG. Adaptive sliding mode control based on ultra⁃local model for robotic manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1905-1912.
[6] Wei WANG,Jian-ting ZHAO,Kuan-rong HU,Yong-cang GUO. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 464-471.
[7] Yun-wei ZHAO,De-xu GENG,Xiao-min LIU,Qi LIU. Implementation and stability on turning with constant radius of pneumatic flexible hexapod robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 472-482.
[8] Fu LIU,Yi AN,Bo DONG,Yuan-chun LI. Decentralized energy guaranteed cost decentralized optimal control of reconfigurable robots based on ADP [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 342-350.
[9] Xing-tian QU,Xue-xu WANG,Hui-chao SUN,Kun ZHANG,Long-wei YAN,Hong-yi WANG. Fuzzy self⁃adaptive PID control for fused deposition modeling 3D printer heating system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 77-83.
[10] Miao-miao MA,Jun-jun PAN,Xiang-jie LIU. Model predictive load frequency control of microgrid with electrical vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1644-1652.
[11] Shu⁃you YU,Lei TAN,Wu⁃yang WANG,Hong CHEN. Control of active four wheel steering vehicle based ontriple⁃step method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 934-942.
[12] Hai⁃ying WEN,Xiang REN,Wei⁃liang XU,Ming CONG,Wen⁃long QIN,Shu⁃hai HU. Bionic design and experimental test of temporomandibular joint for masticatory robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 943-952.
[13] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[14] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[15] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!