Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2156-2167.doi: 10.13229/j.cnki.jdxbgxb20220285

Previous Articles    

Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer

Jin-wu GAO1,2(),Yi-lin WANG1,2,Hua-yang LIU1,2,Yi-da WANG2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.College of Communication Engineering,Jilin University,Changchun 130022,China
  • Received:2022-03-22 Online:2022-09-01 Published:2022-09-13

Abstract:

A new decoupling control strategy was proposed for the air supply system of proton exchange membrane fuel cell (PEMFC), which solves the problem of the cooperative control of the air flow rate and pressure, then realizes the high precision control of the both. A linear variable parameter model of the air flow rate and pressure was established, based on the model, a control scheme combining sliding mode observer and state feedback controller was designed, in which the gain value of state feedback was solved by linear quadratic regulator (LQR). The control scheme is verified on PEMFC cathode experimental platform. The high precision control of the air flow rate and pressure can be realized, and the decoupling control of flow and pressure can be achieved.

Key words: automatic control technology, proton exchange membrane fuel cell, air supply control, decoupling control, sliding mode observer, linear quadratic regulator

CLC Number: 

  • TK91

Fig.1

Air supply system for PEMFC"

Table 1

Equation of parameters"

a11=?f1?pca×RairTVcaa21=RairTVca
b11=?f1?Ncp×1Tcpb12=-?f1?pca×RairTVca
b22=-RairTVca

Fig.2

Compressor flow rate fitting evaluation index"

Fig.3

Compressor flow rate Map"

Fig.4

Throttle angle fitting evaluation index"

Table 2

Throttle Angle fitting polynomial coefficient"

c1=460.2c6=-0.026?12
c2=-9.62c7=-0.000?150?8

c3=3.456

c4=0.066?46

c5=-0.028?26

c8=6.487×10-5

c9=0.000?102?6

c10=8.76×10-5

Fig.5

Throttle angle Map"

Fig.6

System controller"

Fig.7

Air supply system experimental platform for PEMFC"

Fig.8

State feedback gain"

Fig.9

Results of control of test 1"

Fig.10

Results of control of test 2"

Fig.11

Results of control of test 3"

Fig.12

Results of control of test 4"

1 Daud W R W, Rosli R E, Majlan E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620-638.
2 王凡. 燃料电池进气系统控制[D]. 杭州: 浙江大学控制科学与工程学院, 2016.
Wang Fan. Air supply control for fuel cell systems[D]. Hangzhou: College of Control Science and Engineering, Zhejiang University, 2016.
3 王帅. 质子交换膜燃料电池供气系统的建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2019.
Wang Shuai. Research on modeling and control of pem fuel cell air supply system[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2019.
4 周雅夫, 邵芳雪, 黄立建, 等. 燃料电池车用新型低纹波DC/DC变换器设计[J]. 吉林大学学报: 工学版, 2020, 50(4): 1201-1208.
Zhou Ya-fu, Shao Fang-xue, Huang Li-jian, et al. Design of a new low ripple DC/DC converter for fuel cell vehicles [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1201-1208.
5 Wang Guo-liang, Wang Yong, Shi Jun-hai, et al. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC[J]. ISA Transactions, 2010, 49(1): 87-94.
6 Williams J G, Liu G P, Chai S H, et al. Intelligent control for improvements in PEM fuel cell flow performance[J]. International Journal of Automation and Computing, 2008, 5(2): 145-151.
7 Chen H C, Liu Z, Ye X C, et al. Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system[J]. Energy, 2022, 238(C): No. 121949.
8 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: The University of Michigan,2003.
9 Omer Abbaker A M, Wang H P, Tian Y. Adaptive integral type-terminal sliding mode control for PEMFC air supply system using time delay estimation algorithm[J]. Asian Journal of Control, 2022, 24(1): 217-226.
10 Talj R J, Hissel D, Ortega R, et al. Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 1906-1913.
11 Hu Yun-feng, Chen Huan, Gong Xun, et al. Control-oriented modeling and robust nonlinear triple-step controller design for an air-feed system for polymer electrolyte membrane fuel cells[J]. Asian Journal of Control, 2019, 21(4): 1811-1823.
12 Sun L, Shen J, Hua Q S, et al. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied Energy, 2018, 231: 866-875.
13 陈雪兰. 燃料电池系统建模与控制研究[D]. 杭州: 浙江大学控制科学与工程学院, 2013.
Chen Xue-lan. Research on modeling and control of fuel cell system[D]. Hangzhou: College of Control Science and Engineering, Zhejiang University, 2013.
14 Liu Jian-xing, Gao Ya-bin, Su Xiao-jie, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique[J]. IEEE Transactions on Control Systems Technology, 2019, 27 (3): 1129-1138.
15 Zhang Jun-zhi, Liu Gui-dong, Yu Wen-sheng, et al. Adaptive control of the airflow of a PEM fuel cell system[J]. Journal of Power Sources, 2008, 179(2): 649-659.
16 Zhao Dong-dong, Gao Fei, Bouquain David, et al. Sliding-mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1): 51-61.
17 Fonseca R D, Bideaux E, Gerard M, et al. Control of PEMFC system air group using differential flatness approach: validation by a dynamic fuel cell system model[J]. Applied Energy, 2014, 113: 219-229.
18 Li Meng, Yin Hai, Ding Tian-wei, et al. Air flow rate and pressure control approach for the air supply subsystems in PEMFCs[J/OL]. [2022-03-15].
19 Zhao Dong-dong, Benjamin Blunier, Gao Fei, et al. Control of an ultrahigh-speed centrifugal compressor for the air management of fuel cell systems[J]. IEEE Transactions on Industry Applications, 2014, 50(3): 2225-2234.
20 Zhao Dong-dong, Zheng Qing, Gao Fei, et al. Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1788-1798.
[1] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[2] Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155.
[3] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[4] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[5] Zhen-ning LIU,Ke JIANG,Tao-tao ZHAO,Wen-xuan FAN,Guo-long LU. Development and experimental of high⁃power proton exchange membrane fuel cell test system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2025-2033.
[6] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[7] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[8] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[9] Ang LI,Hong-yuan YANG,Xiao-meng LEI,Kai-wen SONG,Cheng-hui QIAN. Closed-loop control of traveling attitude of hexapod robot based on equivalent connecting link model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1696-1708.
[10] Guang-xin HAN,Ju-le ZHAO,Yun-feng HU. Moving horizon linear quadratic regulator control for ball and plate system with input constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1982-1989.
[11] Bin XIAN,Shi-jing ZHANG,Xiao-wei HAN,Jia-ming CAI,Ling WANG. Trajectory planning for unmanned aerial vehicle slung⁃payload aerial transportation system based on reinforcement learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2259-2267.
[12] Fang XU,Jun-ming ZHANG,Yun-feng HU,Ting QU,Yi QU,Qi-fang LIU. Lateral and longitudinal coupling real⁃time predictive controller for intelligent vehicle path tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2287-2294.
[13] Shu-you YU,Huan CHANG,Ling-yu MENG,Yang GUO,Ting QU. Disturbance observer based moving horizon control for path following problems of wheeled mobile robots [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1097-1105.
[14] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[15] Guo-ying CHEN,Jun YAO,Peng WANG,Qi-kun XIA. Stability control strategy for rear in⁃wheel motor drive vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 397-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!