Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2626-2635.doi: 10.13229/j.cnki.jdxbgxb20210321

Previous Articles    

Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading

Yi-hong WANG1(),Qiao-luo TIAN1,2,Guan-qi LAN3,Sheng-fa YAO4,Jian-xiong ZHANG1,Xi LIU1   

  1. 1.School of Civil Engineering,Chang'an University,Xi'an 710061,China
    2.POWERCHINA Guizhou Electric Power Engineering Co. ,Ltd. ,Guiyang 550081,China
    3.School of Civil Engineering,Xi'an Shiyou University,Xi'an 710065,China
    4.Jiangsu Tianshun Metal Materials Group Co. ,Ltd. ,Yangzhong 212219,China
  • Received:2021-04-13 Online:2022-11-01 Published:2022-11-16

Abstract:

To study the mechanical properties of high-strength steel reinforced concrete columns under large eccentric loading, and to determine the stress state and the compressive strength level of a new developed 630 MPa ribbed high-strength steel, 17 concrete columns reinforced with 630 MPa high-strength steel tested under large eccentric compression were fabricated, and the failure pattern, lateral deflection, strain of steel and concrete, and the bearing capacity were analyzed. The results show that the typical failure pattern of 630 MPa high-strength steel reinforced concrete column with large eccentric compression is the same as that of ordinary reinforced concrete column. The ultimate compressive strain of concrete compression zone is greater than 0.0033 in the current code, which is conducive to give full play to the compressive strength of 630 MPa high strength reinforcement in eccentric compression member, so that the compressive strength reaches the same value as the tensile strength. The test value of bearing capacity of each specimen is much higher than its design value, with an average value of the ratio of 1.887. It is reasonable and safe to design and calculate the 630 MPa high strength reinforced concrete column members by using the current specification. The tensile and compressive strength design values as 545 MPa of the 630 MPa high-strength steel in column member subjected to eccentricity is put forward, providing an experimental basis for the compilation of technical specification for high-strength bar in concrete structures and the promotion of 630 MPa high-strength steel in engineering application.

Key words: structural engineering, 630 MPa high-strength steel, large eccentric compression, high strength reinforced concrete column, compressive strength, bearing capacity

CLC Number: 

  • TU375.3

Fig.1

Geometry size and reinforcement of specimen"

Table 1

List of specimens"

试件编号混凝土强度等级b/mmh/mme0/mm纵筋配置箍筋配置
d/mmρ/%纵筋种类配箍形式箍筋种类
EC1-1C50300500270160.54T638@ 100T63
EC1-2300500270221.01T638@ 70HRB400
EC1-3300500270251.31T638@ 70HRB400
EC2-1C50300500270160.54TB638@ 100T63
EC2-2300500270221.01TB638@ 100T63
EC2-3300500270251.31TB638@ 70HRB400
EC3-1C50300500220160.54TB638@ 100T63
EC3-2300500320160.54TB635@ 100高强钢丝
EC4-1C50300500270160.54TB638@ 70HRB400
EC4-2300500270160.54TB638@ 70T63
EC4-3300500270160.54TB635@ 100高强钢丝
EC4-4300500270160.54TB635@ 70高强钢丝
EC4-5300500270160.54TB638@ 50T63
EC5-1C40300500270160.54TB638@ 100T63
EC5-2300500270221.01TB638@ 100T63
EC6-1C30300500270160.54TB635@ 100高强钢丝
EC6-2300500270160.54TB638@ 70HRB400

Table 2

Material properties of concrete"

混凝土强度等级fcu,m/MPafc,m/MPa
C5050.5932.67
C4041.5127.76
C3031.2620.90

Table 3

Material properties of steel"

钢筋类别直径/mmfy,m/MPafu,m/MPa最大力下的总伸长率/%断后伸 长率/%
T631663381911.021.9
T632265984710.319.2
T632565585610.4
HRB400847664711.629.3
T63868681315.023.9
高强钢丝5147017338.714.3

Fig.2

Loading machine and measurement"

Table 4

Test Results of Compression Members with Large Eccentricity"

试件编号Ncr/kNNs/kNf/mm破坏形态
EC1-127417795.07受拉破坏
EC1-230721924.00混合破坏
EC1-326822793.00牛腿破坏
EC2-129317784.77受拉破坏
EC2-228422415.40受拉破坏
EC2-327621453.43牛腿破坏
EC3-136724043.59受拉破坏
EC3-225012897.30受拉破坏
EC4-129617195.04受拉破坏
EC4-231117485.69受拉破坏
EC4-326815553.69牛腿破坏
EC4-422616624.19混合破坏
EC4-531117725.23受拉破坏
EC5-130415244.51受拉破坏
EC5-234419924.57混合破坏
EC6-126913645.44混合破坏
EC6-224810783.56牛腿破坏

Fig.3

Typical tensile failure pattern of specimens"

Fig.4

Curves of lateral deflection"

Fig.5

Strain curves of longitudinal reinforcement"

Fig.6

Compressive strain curve of concrete"

Fig.7

Influence of test parameters on bearing capacity"

Table 5

Bearing capacity analysis of large-eccentric compressive column specimens"

试件编号Nd/kNNu1/kNNu2/kNNs/kNNs/NdNs/Nu1Ns/Nu2Nu2/Nu1
EC1-18861108107817792.0091.6061.6500.973
EC1-213001676161921921.6861.3081.3540.966
EC2-18861108107817782.0081.6051.6490.973
EC2-213001676161922411.7241.3381.3840.966
EC3-112011549151524042.0021.5521.5870.978
EC3-266681379112891.9351.5861.6300.973
EC4-18861108107817191.9411.5521.5950.973
EC4-28861108107817481.9731.5781.6220.973
EC4-48861108107816621.8771.5001.5420.973
EC4-58861108107817722.0011.6001.6440.973
EC5-18231042101315241.8521.4621.5040.972
EC5-212011568151419921.6581.2701.3160.966
EC6-173393490813641.8601.4611.5020.972
平均值μ1.8871.4941.5370.972
标准差σ0.1210.1140.1130.003
变异系数δ0.0640.0760.0740.003
1 Hou Y H, Cao S Y, Ni X Y, et al. Research on concrete columns reinforced with new developed high-strength steel under eccentric loading[J]. Materials, 2019, 12(13): 12132139.
2 王毅红, 赵一迪, 牛行行, 等. 新型高强钢筋与混凝土粘结锚固性能试验[J]. 武汉大学学报: 工学版, 2020, 53(6): 507-512, 526.
Wang Yi-hong, Zhao Yi-di, Niu Hang-hang, et al. Experimental study of bond-anchorage properties of a new type high-strength rebar with concrete[J]. Engineering Journal of Wuhan University, 2020, 53(6): 507-512, 526.
3 . 混凝土结构设计规范 [S].
4 Gao D Y, Huang Y C, Gang C, et al. Bond stress distribution analysis between steel bar and steel fiber reinforced concrete using midpoint stress interpolation method[J]. Construction and Building Materials, 2020, 260: 119866.
5 孙传智, 缪长青, 李爱群, 等. 短期荷载作用下600 MPa级超高强钢筋混凝土梁裂缝宽度试验研究[J]. 土木工程学报, 2020, 53(1): 12-23.
Sun Chuan-zhi, Miao Chang-qing, Li Ai-qun, et al. Experimental study on crack width of concrete beam with 600 MPa ultra-high strength steel bars under short-term loading[J]. China Civil Engineering Journal, 2020, 53(1): 12-23.
6 傅剑平, 姚佳琳, 崔嘉仁, 等. 配置高强钢筋工字形截面剪力墙试件抗震抗剪性能试验与有限元分析[J]. 土木工程学报, 2018, 51(3): 44-51, 68.
Fu Jian-ping, Yao Jia-lin, Cui Jia-ren, et al. Experimental studies and finite element analysis on seismic shear behavior of high-strength rebars shear walls with flanges[J]. China Civil Engineering Journal, 2018, 51(3): 44-51, 68.
7 Jiang J, Peng Z Y, Ye Z J, et al. Behaviour of 690 MPa high strength steel built-up H-section columns under eccentric load scenarios[J]. Engineering Structures, 2020, 213: 110550.
8 张建伟, 李晨, 李翔宇, 等. HRB600级钢筋高强混凝土柱抗震性能试验研究[J]. 土木工程学报, 2019, 52(8): 6-17.
Zhang Jian-wei, Li Chen, Li Xiang-yu, et al. Experimental study on seismic behavior of high-strength concrete columns with HRB600 steel bars[J], China Civil Engineering Journal, 2019, 52(8): 6-17.
9 李义柱. 600 MPa级钢筋混凝土柱受力性能试验与理论研究[D]. 南京: 东南大学土木工程学院, 2019.
Li Yi-zhu. Experimental and theoretical research on mechanical behavior of RC columns with 600 MPa reinforcing bars[D]. Nanjing: School of Civil Engineering, Southeast University, 2019.
10 张建伟, 夏冬瑞, 乔崎云, 等. HRB600级钢筋高强混凝土柱偏心受压性能试验研究[J]. 建筑结构学报, 2019, 40(4): 74-80.
Zhang Jian-wei, Xia Dong-rui, Qiao Qi-yun, et.al. Experimental study on eccentric compression performance of high-strength concrete columns with HRB600 steel bars[J]. Journal of Building Structures, 2019, 40(4): 74-80.
11 戎贤, 杜虹茜, 张健新. HRB600E钢筋混凝土偏心受压柱受力性能试验研究[J]. 硅酸盐通报, 2019, 38(1): 60-64.
Rong Xian, Du Hong-xi, Zhang Jian-xin. Experimental research on mechanical behavior of eccentrically loaded reinforced concrete column with 600 MPa steel bars[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 60-64.
12 . 新型热处理带肋高强钢筋混凝土结构技术规程 [S].
13 D. 热处理带肋高强钢筋混凝土结构技术规程 [S].
14 321182-R046—2016. T63热处理带肋高强钢筋混凝土结构技术规程 [S].
15 . 钢筋混凝土用钢第2部分: 热轧带肋钢筋 [S].
16 . 混凝土物理力学性能试验方法标准 [S].
17 . 金属材料拉伸试验第1部分:室温试验方法 [S].
18 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003.
[1] Yun-peng CHU,Xin-hui SUN,Ming LI,Yong YAO,Han-jie HUANG. Wind pressures on a circular hyperbolic⁃paraboloid roof subjected to a simulated downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1826-1833.
[2] Guo-jun YANG,Qi-wei TIAN,Ming-hang LYU,Yong-feng DU,Guang-wu TANG,Zong-jian HAN,Yi-duo FU. Review of mechanic characteristics of tunnel⁃type anchorage of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1245-1263.
[3] Yong YAO,Liu-feng SU,Ming LI,Yun-peng CHU,Han-jie HUANG. Wind load characteristics of double⁃sided spherical shell roof under downburst [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 615-625.
[4] Ya-chuan KUANG,Zhe-xuan SONG,Yin-hu LIU,Xiao-fei MO,Liang-ming FU,Shi-quan LUO. Experiment on mechanical properties of new type assembled double-cabin utility tunnel [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 596-603.
[5] Bo XU,Chuan-xi LI. Detection method of bearing capacity of long-span concrete-filled steel tubular arch bridge based on grey theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2360-2366.
[6] Yong-zhi GONG,Jin-hua KUANG,Fu-long KE,Quan ZHOU,Xiao-yong LUO. Experiment on seismic behavior of assembled shear wall joints connected by ultra high performance concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2367-2375.
[7] Xue-ping FAN,Guang-hong YANG,Zhi-peng SHANG,Xiao-xiong ZHAO,Qing-kai XIAO,Yue-fei LIU. Dynamic reliability fusion prediction of long-span bridge girder considering structural serviceability [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 144-153.
[8] Jing ZHOU,Ya-jun LI,Wei-feng ZHAO,Zong-jian LUO,Guo-bin BU. Eccentric compression behavior of bamboo⁃plywood and steel⁃tube dual⁃confined dust⁃powder concrete columns [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2096-2107.
[9] Fu-shou LIU,Qi WEI,Wen-ting XU,Guo-jin TAN. Damage detection of truss structures based on elastic wave propagation and spectral element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2087-2095.
[10] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[11] Xue-ping FAN,Guang-hong YANG,Qing-kai XIAO,Yue-fei LIU. Optimal R-vine copula information fusion for failure probability analysis of long-span bridge girder [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1296-1305.
[12] Jiang YU,Zhi-hao ZHAO,Yong-jun QIN. Damage of reinforced concrete shear beams based on acoustic emission and fractal [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 620-630.
[13] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[14] Wen-ting DAI,Ze-hua SI,Zhen WANG,Qi WANG. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
[15] Xue-ping FAN,Guang QU,Yue-fei LIU. Bridge extreme stress prediction based on new data assimilation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 572-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!