Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 620-630.doi: 10.13229/j.cnki.jdxbgxb20191191

Previous Articles    

Damage of reinforced concrete shear beams based on acoustic emission and fractal

Jiang YU(),Zhi-hao ZHAO,Yong-jun QIN   

  1. School of Civil Engineering and Architecture,Xinjiang University,Urumqi 830047,China
  • Received:2019-12-27 Online:2021-03-01 Published:2021-02-09

Abstract:

Through the shear failure test of five reinforced concrete beams with different shear span ratio and different hoop ratio, the damage evolution process of concrete beams was studied by using acoustic emission detection technology and fractal theory. Based on the parameters of acoustic emission signal energy, ringing count and crack fractal characteristics, the evolution of shear damage of concrete beams is quantitatively analyzed. Test results show that the acoustic emission ringing counts and energy with the damage degree are divided into three stages. The accumulate ringing count, energy and the fractal dimension of crack increase with load level. The growth rate of the crack increases with the shear span ratio, while decreases with increasing stirrup ratio, proving that the acoustic emission parameters can be used as a damage degree evaluation index. By establishing the correlation between the cumulative acoustic emission events and the load level, the damage evolution model of the shear beam is derived, and the correlation between the damage degree and the fractal dimension of the beam surface crack is established.

Key words: structural engineering, concrete beams, damage, acoustic emission, fractal, shear span ratio, stirrup ratio

CLC Number: 

  • TU375.1

Fig.1

Principles of acoustic emission detection"

Fig.2

Acoustic emission signal parameters"

Fig.3

Principle of box counting"

Fig.4

Size and reinforcement diagram of the test"

Table 1

Parameters of test beam"

试验梁参数试验梁编号
B1B2B3B4B5
剪跨比1.52.02.52.52.5
加载跨度/mm338450563563563
箍筋?8@150?8@150?8@150?8@200?6@150
配箍率/%0.450.450.450.360.25

Fig.5

Loading and monitoring method"

Fig.6

Damage status of test beam at each stage"

Fig.7

AE damage and crack location of specimen"

Fig.8

Relationships of ringing count, cumulative ringing count and relative load"

Fig.9

Relationship of Energy,cumulative energy andrelative load"

Fig.10

Relationship of fractal dimension,cumulative ringing count and load"

Fig.11

Cumulative energy-relative load fitting curve"

Table 2

Fitting results of beam damage curve"

试件编号abcR2
B1267 2111.343 74-43 8140.902 7
B2511 6171.530 14114 5500.973 1
B3157 0542.428 85-60 1330.960 9
B4198 0702.653 1111 5930.992 5
B592 3683.305 93101 5150.966 8

Fig.12

Experimental beam damage evolution curve"

Fig.13

Relationship of damage variables and fractal dimension"

1 Yang Y.Shear Behaviour of Reinforced Concrete Members without Shear Reinforcement:A New Look at an Old Problem[M].TU Delft, Delft University of Technology, 2014.
2 余东. 钢筋混凝土变截面悬臂梁受剪及裂缝性能研究[D]. 长沙: 湖南大学土木工程学院, 2017.
Yu Dong. The study on shear and cracking performence of reinforced concrete haunched cantilever beams[D]. Changsha: School of Civil Engineering, Hunan University, 2017.
3 张鹏. 配置HRB500箍筋混凝土梁斜裂缝试验研究[D]. 天津: 河北工业大学土木工程学院, 2015.
Zhang Peng. Experimental research on diagonalcrack width of reinforced concretebeams with hrb500 stirrups[D]. Tianjin: School of Civil Engineering, Hebei University of Technology, 2015.
4 狄胜同, 贾超, 乔卫国, 等. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报: 工学版, 2019, 49(6): 1900-1910.
Di Sheng-tong, Jia Chao, Qiao Wei-guo, et al. Loading rate effect of meso-damage characteristics of crumb rubber concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1900-1910.
5 梁宁慧, 缪庆旭, 刘新荣, 等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报: 工学版, 2019, 49(4): 1144-1152.
Liang Ning-hui, Miao Qing-xu, Liu Xin-rong, et al. Determination of fracture toughness and softening traction-separation law of polypropylene fiber reinforced concrete[J].Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1144-1152.
6 程永春, 张禹维, 焦峪波, 等. 基于导电膜的桥梁应变及裂缝监测试验[J]. 吉林大学学报: 工学版, 2016, 46(5): 1458-1463.
Cheng Yong-chun, Zhang Yu-wei, Jiao Yu-bo, et al. Monitoring of strain and crack in bridge using conductive film[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5): 1458-1463.
7 郭庆华, 郤保平, 李志伟, 等. 混凝土声发射信号频率特征与强度参数的相关性试验研究[J]. 中南大学学报: 自然科学版, 2015, 46(4): 1482-1488.
Guo Qing-hua, Xi Bao-ping, Li Zhi-wei, et al. Experimental research on relationship between frequency characteristics of acoustic emission and strength parameter in concrete[J]. Journal of Central South University(Natural Science Edition), 2015, 46(4): 1482-1488.
8 段力群, 董璐, 马林建, 等. 泡沫混凝土单轴压缩下声发射特征试验研究[J]. 中国矿业大学学报, 2018, 47(4): 742-747.
Duan Li-qun, Dong Lu, Ma Lin-jian, et al. Experimental study of acoustic emission characteristics of foamed concrete under uniaxial compression[J]. Journal of China University of Mining and Technology, 2018, 47(4): 742-747.
9 葛若东, 刘茂军, 吕海波. 钢筋混凝土梁破坏过程的声发射特征试验研究[J]. 广西大学学报: 自然科学版, 2011, 36(1): 160-165.
Ge Ruo-dong,Liu Mao-jun,Lv Hai-bo.Experimental rasearch on acoustic emission characteristics of reinforced concrete beams during failure process[J]. Journal of Guangxi University (Natural Science Edition), 2011, 36(1): 160-165.
10 李旭, 霍林生, 李宏男. 基于声发射的钢筋混凝土梁承载能力评估[J]. 振动与冲击, 2013, 32(5): 6-9, 25.
Li Xu, Huo Lin-sheng, Li Hong-nan. Carrying capacity assessment of reinforced concrete beam based on acoustics emission[J]. Journal of Vibration and Shock, 2013, 32(5): 6-9, 25.
11 Mandelbrot B B, Passoja D E, PaullayA J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308: 721-722.
12 曹茂森, 任青文, 翟爱良, 等, 混凝土结构损伤的分形特征实验分析[J]. 岩土力学, 2005(10): 49-53.
Cao Mao-sen, Ren Qing-wen, Zhai Ai-liang, et al.Experimental study on fractal characterization in damages of concrete structures[J]. Rock and Soil Mechanics, 2005(10): 49-53.
13 Saouma V E, Barton C C, Gamaleldin N.A fractal characterization of fracture surfaces in concrete[J]. Engineering Fracture Mechanics, 1990, 35: 47-53.
14 Issa M A, Hammad A M. Assessment and evaluation of fractal dimension of concrete fracture surface digitized images[J].Cement and Concrete Research, 1994, 24(2): 325-334.
15 Carpinteri A, Spagnoli A, Vantadori S. A multifractal analysis of fatigue crack growth and its application to concrete[J]. Engineering Fracture Mechanics, 2010, 77(6): 974-984.
16 Lacidogna G, Gianfranco P, Federico A, et al. Experimental investigation on crack growth in pre-notched concrete beams[J].Proceedings, 2018, 2(8): 429.
17 秦子鹏, 田艳, 李刚, 等. BFRP 布加固钢筋混凝土梁抗弯性能的分形特征研究[J]. 应用基础与工程科学学报, 2018, 26(5): 973-985.
Qin Zi-peng, Tian Yan, Li Gang, et al. Study on fractal features of flexural performance of reinforced concrete beams strengthened with BFRP sheets[J]. Journal of Applied Fundamentals and Engineering Sciences, 2018, 26(5): 973-985.
18 蒋赏, 徐港, 赵恬悦. 冻融损伤混凝土梁抗力性能演化的裂缝分形特征[J]. 水电能源科学, 2018, 36(1): 124-127.
Jiang Shang, Xu Gang, Zhao Tian-yue. Fractal characteristics of fracture resistance evolution of concrete beam subjected to freeze-thaw damage[J]. Hydropower Energy Science, 2018, 36(1): 124-127.
19 . 混凝土结构试验方法标准[S].
20 Ohtsu M, Isoda T, Tomoda Y. Acoustic emission techniques standardized for concrete structure[J]. Jourmnal of Acoustic Emission, 2007, 25: 22-32.
[1] Chun-liang LI,Zhi-hao LIN,Luo-luo ZHAO. Effect of damaged hinge joint and damaged slab on transverse force of hollow slab bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 611-619.
[2] Shu-wei ZHANG,Zhong-yin GUO,Zhen YANG,Ben-min LIU. Application of multi⁃fractal features of driving performance in driver fatigue detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 557-564.
[3] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[4] Ya WEI,Wei-kang KONG,Cheng WAN,Yong-zhi ZUO,Qiao-zhi LU. Colorimetry method in assessing fire-damaged concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 233-244.
[5] Yu MAO,Ping LI,Teng-fei NIAN,Mei LIN,Xi-ying WEI. Mechanical friction intensity behavior of asphalt pavement based on fractal theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 594-605.
[6] Xue-ping FAN,Guang QU,Yue-fei LIU. Bridge extreme stress prediction based on new data assimilation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 572-580.
[7] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[8] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[9] De-lei YANG,Le-wei TONG. Calculation formula of SCF for CHS⁃CFSHS welded T⁃joints with brace under axial tension [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1891-1899.
[10] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[11] Wen⁃quan LIU,Liang YING,Hai RONG,Ping HU. Forming limit prediction of high strength steel based on damage modified M⁃K model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1266-1271.
[12] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[13] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[14] Cong LI,Hong⁃wei ZHAO,Lin⁃lin SUN. Mechanical property of 45 steel under reciprocating torsional load based on nanoindentation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 859-864.
[15] Wei⁃min ZHUANG,Peng⁃yue WANG,Dong⁃xuan XIE,Yan⁃hong CHEN. Scratch resistance of aluminum automotive coatings based on continuum damage mechanics [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 829-835.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!