Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2636-2643.doi: 10.13229/j.cnki.jdxbgxb20210391

Previous Articles    

Mechanical properties of ultra⁃thin overlay considering load transfer capacity of old cement pavement joints

Fen YE1(),Shi-yuan HU2   

  1. 1.Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University,Shanghai 201804,China
    2.Liaoning Provincial Transportation Planning and Design Institute Co.,Ltd.,Shenyang 110166,China
  • Received:2021-04-30 Online:2022-11-01 Published:2022-11-16

Abstract:

In order to study the mechanical characteristics of ultra-thin asphalt overlay on old cement pavement of different joint load transfer capacity, the finite element model is established to analyze the stress at the center of joint at the bottom of asphalt overlay by ABAQUS. The results show that the first principal stress increases, and the maximum shear stress and equivalent stress decrease with the increase of ultra-thin overlay thickness. The three kinds of stresses increase linearly with the increase of the ultra-thin overlay modulus and vehicle load, and decrease with the increase of the joint load transfer capacity. The interlamination contact states have significant effects on the maximum shear stress of ultra-thin overlay. The order of the influence degree of factors are as follows: vehicle load, ultra-thin overlay modulus, joint load transfer capacity, interlamination contact state, ultra-thin overlay thickness. The increase of the joint load transfer capacity can significantly improve the fatigue crack life of the ultra-thin overlay, and the relationship between them is according to power function. The joint load transfer capacity of old cement pavement should be controlled according to the traffic load before ultra-thin overlay.

Key words: road engineering, cement pavement, joint load transfer capacity, ultra-thin overlay, mechanical properties

CLC Number: 

  • U416.2

Fig.1

Relationship between modulus of virtual material layer and joint load transfer capacity"

Table 1

Modulus of virtual material layer under different joint load transfer capacity"

接缝传荷能力/%虚拟材料层模量/MPa
6017.6
6525.1
7032.8
7541.9
8075.7
85228.7
90502.5

Table 2

Calculation parameters of each structural layer"

结构层厚度/m弹性模量/MPa泊松比
超薄罩面层0.015~0.3800~1 6000.25
水泥路面0.2431 0000.15
地基91800.35

Fig.2

Variation of stress at calculation point with ultra-thin asphalt overlay thickness"

Fig.3

Variation of stress at calculation point with ultra-thin asphalt overlay modulus"

Table 3

Linear relationship between stress of 1.5 cm thick ultra-thin overlay and axle load"

接缝传荷 能力/%σ1-Fτmax-Fσe-F
kbkbkb
601.1×10-3-2×10-59.6×10-3-5×10-48.5×10-3-4×10-4
650.9×10-3-2×10-59.1×10-3-3×10-48.0×10-3-3×10-4
700.7×10-3-1×10-58.6×10-3-1×10-47.7×10-3-2×10-4
750.6×10-3-0.8×10-58.2×10-3-0.2×10-47.3×10-3-1×10-4
800.4×10-3-0.6×10-57.2×10-3-0.2×10-46.4×10-3-0.1×10-4
850.1×10-3-0.5×10-65.0×10-3-0.2×10-44.4×10-3-0.1×10-4
900.5×10-4-0.1×10-73.4×10-3-0.2×10-43.0×10-3-0.1×10-4

Table 4

Linear relationship between stress of 2.0 cm thick ultra-thin overlay and axle load"

接缝传荷 能力/%σ1-Fτmax-Fσe-F
kbkbkb
601.5×10-3-2×10-59.0×10-3-4×10-47.9×10-3-3×10-4
651.3×10-3-2×10-58.4×10-3-3×10-47.4×10-3-2×10-4
701.1×10-3-1×10-57.9×10-3-2×10-47.0×10-3-2×10-4
750.9×10-3-1×10-57.5×10-3-1×10-46.6×10-3-1×10-4
800.6×10-3-0.8×10-56.4×10-3-0.4×10-45.7×10-3-0.1×10-4
850.2×10-3-0.8×10-54.3×10-3-0.1×10-43.8×10-3-0.4×10-5
900.8×10-4-0.4×10-63.0×10-3-0.2×10-42.6×10-3-0.8×10-4

Table 5

Linear relationship between stress of 2.5 cm thick ultra-thin overlay and axle load"

接缝传荷 能力/%σ1-Fτmax-Fσe-F
kbkbkb
601.7×10-3-1×10-58.3×10-3-3×10-47.3×10-3-3×10-4
651.4×10-3-1×10-57.8×10-3-2×10-46.8×10-3-2×10-4
701.2×10-3-0.9×10-57.3×10-3-1×10-46.4×10-3-1×10-4
751×10-3-1×10-56.9×10-3-1×10-46.1×10-3-0.9×10-4
800.7×10-3-0.9×10-55.9×10-3-0.4×10-45.2×10-3-0.3×10-4
850.2×10-3-0.2×10-53.9×10-3-0.1×10-43.5×10-3-0.4×10-5
900.1×10-4-0.7×10-62.7×10-3-0.2×10-42.4×10-3-0.9×10-5

Fig.4

Variation of stress at calculation point with load transfer capacity of old cement pavement joints"

Fig.5

Stress of calculation point under different interlamination contact states"

Fig.6

Grey correlation degree of three kinds of stress and each factor"

Table 6

Fatigue cracking life of ultra-thin asphalt overlay"

超薄罩面 厚度/cm接缝传荷能力%沥青罩面层底最大水平拉应变/με疲劳开裂 寿命/次
1.560169.685 789 663
65155.408 207 794
70145.5610 641 677
75136.3213 806 559
80134.5814 531 053
2.060140.9812 077 103
65138.8912 814 872
70137.0913 497 956
75134.4314 589 640
80130.6316 349 092
2.560139.2112 700 217
65136.2913 813 686
70134.0314 765 265
75131.7615 800 350
80126.2518 719 387

Fig.7

Variation of fatigue cracking life of ultra-thin asphalt overlay"

1 Minhoto M J C, Pais J C, Pereira P A A. The temperature effect on the reflective cracking of asphalt overlays[J]. Road Materials and Pavement Design, 2008, 9(4): 615-632.
2 Chen D H, Won M. CAM and SMA mixtures to delay reflective cracking on PCC pavements[J]. Construction and Building Materials, 2015, 96: 226-237.
3 Rao S, Darter M, Tompkins D, et al. Composite pavement systems, Volume 1: HMA/PCC composite pavements[R]. Washington DC: The National Academies Press, 2013.
4 孙红军,谢晓杰,王永贵.基于ANSYS的旧水泥混凝土路面沥青加铺层应力状态研究[J]. 公路工程, 2020, 45(1): 173-177, 211.
Sun Hong-jun, Xie Xiao-jie, Wang Yong-gui. Research on stress state of asphalt overlay on old cement concrete pavement based on ANSYS[J]. Highway Engineering, 2020, 45(1): 173-177, 211.
5 Decker D S, Hansen K R. Design and construction of HMA overlays on rubblized PCC pavements: state of the practice[C]∥Transportation Research E-Circular E-C087: Rubblization of Portland Cement Concrete Pavements, Washington DC, USA, 2006: 2-3.
6 程培峰, 林宏. 基于Abaqus的旧水泥混凝土路面加铺沥青层结构的力学研究[J]. 公路工程, 2017, 42(1): 9-12, 30.
Cheng Pei-feng, Lin Hong. Based on abaqus of paving asphalt layer structure of old cement concrete pavement mechanics[J]. Highway Engineering,2017, 42(1): 9-12, 30.
7 班游, 蒋倩灵香, 杨建军. 水泥混凝土路面加铺沥青层结构应力分析[J]. 长沙理工大学学报: 自然科学版, 2019, 16(4): 64-72.
Ban You, Jiang Qian-ling-xiang, Yang Jian-jun. Stress analysis of asphalt layer on cement concrete pavement[J]. Journal of Changsha University of Science and Technology(Natural Science), 2019, 16(4):64-72.
8 李淑明, 许志鸿, 蔡喜棉. 土工织物对复合式路面结构内力影响分析[J]. 中国公路学报, 2006(1):28-31.
Li Shu-ming, Xu Zhi-hong, Cai Xi-mian. Analysis of impact of geo textile on stress of composite pavement structure[J]. China Journal of Highway and Transport, 2006(1): 28-31.
9 李淑明, 蔡喜棉, 许志鸿. 防治复合式路面的反射裂缝技术研究[J]. 同济大学学报: 自然科学版, 2005(12): 1616-1620.
Li Shu-ming, Cai Xi-mian, Xu Zhi-hong. Study on technology of retarding reflective crackings of composite pavement overlaid with asphalt concrete[J]. Journal of Tongji University(Natural Science), 2005(12):1616-1620.
10 Zhou F, Scullion T. Mix design, construction, and performance of a thin HMA overlay on pumphrey drive, fort worth, TX[R]. Washington DC: The National Academies Press, 2008.
11 虞将苗, 陈富达, 彭馨彦, 等. 高韧超薄沥青磨耗层在港珠澳大桥珠海人工岛通道上的应用[J]. 清华大学学报: 自然科学版, 2020, 60(1): 48-56.
Yu Jiang-miao, Chen Fu-da, Peng Xin-yan, et al. High-toughness, ultra-thin friction course for the channel on the artificial island of the Hong Kong-Zhuhai-Macao bridge[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 48-56.
12 梁春雨, 马俊琛, 谭国金, 等. 水稳碎石基层层间状态对路面结构力学响应的影响[J]. 吉林大学学报: 工学版, 2022, 52(5): 1063-1070.
Liang Chun-yu, Ma Jun-chen, Tan Guo-jin, et al. Influence of interlayer state of cement stabilized macadam on mechanical response of pavement structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1063-1070.
13 肖兴强.水泥混凝土路面板底脱空和接缝传荷能力的关系[D].成都:西南交通大学土木工程学院,2007.
Xiao Xing-qiang. Relationship between voids beneath slab and the load transfer efficiency[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2007.
14 谭悦. 机场水泥混凝土道面脱空响应及判定方法[D]. 上海: 同济大学交通运输工程学院, 2011.
Tan Yue. Response and identification method of void beneath airport cement concrete pavement[D]. Shanghai: School of Transportation Engineering, Tongji University, 2011.
15 刘丹. 水泥混凝土路面接缝及结构优化研究[D]. 武汉: 武汉理工大学交通学院, 2003.
Liu Dan. Researches on optimum joint and structure of cement concrete pavement[D]. Wuhan: School of Transportation, Wuhan University of Technology, 2003.
16 罗勇, 袁捷. 三维有限元法对水泥混凝土道面接缝传荷作用的模拟方法研究[J]. 公路交通科技, 2013, 30(3): 32-38.
Luo Yong, Yuan Jie. Research on simulation method for load transfer of joints of cement concrete pavement by 3D finite element method[J]. Journal of Highway and Transportation Research and Development, 2013, 30(3): 32-38.
17 代劲, 胡峰, 刘歆. 基于数据分布的快速灰关联分析[J].吉林大学学报: 工学版, 2015, 45(1):283-290.
Dai Jin, Hu Feng, Liu Xin. Novel rapid grey incidence analysis method based on data distribution[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 283-290.
18 . 公路沥青路面设计规范 [S].
[1] Qing-lin GUO,Qiang LIU,Chun-li WU,Li-li LI,Yi-ming LI,Fu-chun LIU. Local temperature field and healing level of crack in conductive asphalt and mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1386-1393.
[2] Cheng-lin SHI,Yong WANG,Chun-li WU,Wen-zhu SONG. Modification of calculation method for active earth pressure on embankment retaining wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1394-1403.
[3] Yu-quan YAO,Jian-gang YANG,Jie GAO,Liang SONG. Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 585-595.
[4] Quan-ping XIA,Jiang-ping GAO,Hao-yuan LUO,Qi-gong ZHANG,Zhi-jie LI,Fei YANG. Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 541-549.
[5] Xiao-he YU,Rong LUO,Zi-yao LIU,Ting-ting HUANG,Yu SHU. Numerical simulation of humidity field of typical cracks in asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2343-2351.
[6] Yan-hai YANG,Hong CUI,Ye YANG,Huai-zhi ZHANG,He LIU. Effect of freeze-thaw cycle on performance of unsaturated emulsified asphalt cold recycled mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2352-2359.
[7] Wu-ping RAN,Hui-min CHEN,Ling LI,Li-qun FENG. Evolution law and model estimation and modification of resilience modulus of coarse grained soil subgrade under wet and dry cycle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2079-2086.
[8] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
[9] Chang-ping WEN,Huan-xia REN. Constitutive relation with double yield surfaces of bioenzyme⁃treated expansive soil based on Lade model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1716-1723.
[10] Zhe-pu XU,Qun YANG. Short⁃term maintenance operation start time optimization based on real⁃time traffic map data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1763-1774.
[11] Yuan-yuan WANG,Lu SUN,Wei-dong LIU,Jin-shun XUE. Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1342-1348.
[12] Hai-bin WEI,Xiang-yan WANG,Fu-yu WANG,Yong ZHANG. Mechanical properties and micro analysis of AC-25 asphalt mixture based on vibration forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1269-1276.
[13] Wei-gang ZHU,Chao ZHU,Ya-qiu ZHANG,Hai-bin WEI. Construction and quality evaluation of digital elevation model based on convolution grid surface fitting algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1073-1080.
[14] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[15] Han-bing LIU,Xin GAO,Ya-feng GONG,Shi-qi LIU,Wen-jun LI. Influence of surface treatment on basalt fiber reactive powder concrete mechanical properties and fracture characteristics [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 936-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!