Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1269-1276.doi: 10.13229/j.cnki.jdxbgxb20200235

Previous Articles    

Mechanical properties and micro analysis of AC-25 asphalt mixture based on vibration forming

Hai-bin WEI1(),Xiang-yan WANG1,Fu-yu WANG1(),Yong ZHANG2   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.Jilin Province Highway Group Co. ,Ltd. ,Changchun 130025,China
  • Received:2019-12-27 Online:2021-07-01 Published:2021-07-14
  • Contact: Fu-yu WANG E-mail:weihb@jlu.edu.cn;wfy@jlu.edu.cn

Abstract:

In order to study the influences of Vertical Vibration Test Method (VTM) and Marshall compaction on the mechanical properties and void distribution of asphalt mixture, AC-25 asphalt mixture samples were prepared by VTM and the Marshall method respectively. The influences of molding method, vibration time and compaction time on the volume parameters and mechanical properties of AC-25 asphalt mixture were studied through VV, VMA, VFA, Marshall stability, compressive strength, split strength and shear strength. The correlation between the volume and performance indexes obtained by two indoor molding methods and the actual pavement was analyzed. Finally, the influences of molding mode, vibration time and compaction time on the grading of molding samples were analyzed by CT scanning technology. The study shows that the AC-25 samples formed by VTM have better mechanical properties and higher correlation with the real road surface. Moreover, the pore structure and mechanical properties of core samples show exponential distribution. The constitutive relationship between the pore structure and mechanical properties of AC-25 asphalt mixture can be described in the form of exponential function.

Key words: asphalt mixture, vertical vibration test method(VTM), Marshall method, AC-25, mechanical properties, pavement core sample, CT scanning technology

CLC Number: 

  • U414

Table 1

Technical indicators of asphalt"

试验项目实测值规定值
针入度(25 °C,5 s,100 g/0.1 mm)8280~100
针入度指数PI-0.6-1.5~+1.0
软化点/°C47.0≥44
延度(15 °C)/cm>100≥100
密度/(g·cm-3)1.005-
老化后质量变化/%-0.082≤±0.8
残留针入度比(25 °C)/%90≥57
残留延度(10 °C)/cm15≥8
60 °C动力黏度/(Pa·s)150.4≥140

Table 2

Technical indicators of coarse aggregates"

技术指标各档集料/mm
19~26.513.2~199.5~13.24.75~9.52.36~4.75
压碎值/%12.612.612.612.612.6
洛杉矶磨耗值/%16.016.016.016.016.0
表观相对密度2.9852.9702.9592.9022.898
吸水率/%0.470.640.841.361.46
黏附性5级5级5级5级5级
坚固性/%3.03.03.03.03.0
针片状颗粒含量/%4.14.25.25.6-
<0.075颗粒含量/%0.60.40.30.40.4
软石含量/%0.30.30.30.30.3

Table 3

Technical indicators of fine aggregate"

实验项目实测值实验项目实测值
表观密度/(g·cm-3)2.805砂当量/%75
坚固性/%2棱角性/s32.7

Table 4

Gradation of AC-25 asphalt mixture"

筛孔尺寸/mm通过率/%筛孔尺寸/mm通过率/%
31.5001002.36026.4
26.50097.91.18020.2
19.00076.80.60016.8
16.000680.30011.5
13.20058.30.1508.9
9.50046.60.0756.4
4.75035.4

Table 5

Comparison of volume parameters of core sample and sample produced by methods of Marshall and VTM"

试件类型ρ/(g?cm-3VV/%VMA/%VFA/%
VX2.5872.711.977.1
VM2.5334.814.065.6
VV2.5833.012.174.9
VM/VX0.9791.7681.1760.851
VV/VX0.9981.1141.0170.971

Table 6

Comparison of properties of core sample and sample produced by methods of Marshall and VTM"

试件性能RXRMRVRM/RXRV/RX
MS(60 °C )/kN20.8612.8218.940.6150.908
RC(20 °C)/MPa9.175.848.700.6370.949
Ri(-10 °C)/MPa3.832.543.650.6630.953
τd(60°C)/MPa1.460.901.450.6160.994
MS0/%91.9490.2592.390.9821.005
TSR/%93.2390.6096.880.9721.039

Fig.1

Scanning diagram of different forming test pieces and core samples"

Fig.2

2-D and 3-D image of asphalt mixture"

Fig.3

Void extraction diagram"

Table 7

Distribution probability fitting parameters"

试件类型ABCR2
MS750.001690.97166-2.141810.983
MS135-0.001791.35975-2.441640.979
VTM100.000481.41987-2.561970.983
VTM600.002310.96523-2.149180.979
芯样0.002870.87059-2.050040.983

Fig.4

Void probability distribution of specimens with different forming methods"

Fig.5

Effect of void ratio on mechanical properties"

Fig.6

Image binaryzation"

Fig.7

Effect of contact point on mechanical properties"

Fig.8

Effect of aggregate inclination on mechanical properties"

1 Corum D K. Designing asphalt concrete mixes which are more readily compacted[J]. Journal of the Association of Asphalt Paving Technologists, 1998, 59(1): 341-359.
2 杜群乐. 沥青路面损坏分析与GTM混合料设计方法的研究[D]. 上海: 同济大学交通运输工程学院, 2006.
Du Qun-le. Distress analysis of asphalt pavement and research on GTM design method of asphalt mixture[D]. Shanghai: School of Transportation Engineering, Tongji University, 2006.
3 陈浙江. 重交通道路沥青混合料压实标准及评价[J]. 交通标准化, 2014(1): 55-58.
Chen Zhe-jiang. Compaction criterion and evaluation of asphalt mixture for heavy-traffic road[J]. Transportation Standardization, 2014(1): 55-58.
4 姚林虎. 沥青混合料试件垂直振动成型方法研究[D].西安: 长安大学公路学院, 2012.
Yao Lin-hu. Research on vertical vibrocompression testing method for asphalt mixture specimen[D]. Xi'an: School of Highway, Chang'an University, 2012.
5 梁慧. ATB-30沥青混合料试件VTM方法及设计方法研究[D]. 西安: 长安大学材料科学与工程学院, 2013.
Liang Hui. Study on vertical vibration testing method and designing method for ATB-30 asphalt mixture[D]. Xi'an: School of Materials Science and Engineering, Chang'an University, 2013.
6 Ksosla N P, Sadasivam S. Evaluation of the effects of mixture properties and compaction methods on the predicted performance of superpave mixtures[Z].Transportation Research Board, 2002:00980094.
7 解晓光,马松林,王哲人. 沥青混合料马歇尔击实法与振动压实法成型工艺的比较研究[J]. 中国公路学报, 2001, 14(1): 9-12.
Xie Xiao-guang, Ma Song-lin, Wang Zhe-ren. Study of compacting properties of asphalt mixturewith MARSHALL and vibratory compaction method[J]. China Journal of Highway and Transport, 2001, 14(1): 9-12.
8 蒋应军,孔令飞,陈浙江. ATB-30沥青混合料VVCM与马歇尔设计对比[J]. 公路交通科技, 2015, 32(6): 6-11.
Jiang Ying-jun, Kong Ling-fei, Chen Zhe-jiang. Comparison of VVCM and Marshall method for ATB-30 asphalt mixture design[J]. Journal of Highway and Transportation Research and Development, 2015, 32(6): 6-11.
9 张毅,薛金顺,陈浙江,等. 成型方法对ATB-30混合料性能的影响[J]. 公路交通科技, 2014, 31(10): 1-6.
Zhang Yi, Xue Jin-shun, Zhang Zhe-jiang, et al. Effect of compaction methods on performance of ATB-30 asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2014, 31(10): 1-6.
10 薛金顺. SMA混合料振动压实试验方法及设计关键技术[D]. 西安: 长安大学公路学院, 2018.
Xue Jin-shun. Research on vertical vibration test method and key technology of SMA mixture[D]. Xi'an: School of Highway, Chang'an University, 2018.
11 Ali Aslam, Mufleh Al Omari. Analysis of HMA permeability through microstructure characterization and simulation of fluid flow in X-ray CT images[D]. Texas A&M University, 2004.
12 段跃华,张肖宁,李智,等. 基于工业 CT 的混凝土集料二维及三维轮廓表征方法[J]. 中国公路学报, 2011, 24(6): 9-15.
Duan Yue-hua, Zhang Xiao-ning, Li Zhi, et al. Methods about digital representation on surface profile of concrete aggregates from 2-D to 3-D based on X-ray computed tomography[J]. China Journal of Highway and Transport, 2011, 24(6): 9-15.
13 易富, 金艳, 苏剑. 两种压实方法下沥青混合料空隙分布特性细观分析[J]. 公路交通科技, 2014, 31(3): 26-31.
Yi Fu, Jin Yan, Su Jian. Mesoscopic analysis of air void distribution of asphalt mixture in two compaction methods[J]. Journal of Highway and Transportation Research and Development, 2014, 31(3): 26-31.
14 任俊达. 基于X-ray CT沥青混合料细观结构及力学性能研究[D]. 哈尔滨:哈尔滨工业大学交通运输工程学院, 2014.
Ren Jun-da. Research on mesoscopic structure and mechanical properties of asphalt mixture based on X-ray CT[D]. Harbin: School of Transportation Engineering, Harbin Institute of Technology, 2014.
[1] Han-bing LIU,Xin GAO,Ya-feng GONG,Shi-qi LIU,Wen-jun LI. Influence of surface treatment on basalt fiber reactive powder concrete mechanical properties and fracture characteristics [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 936-945.
[2] Yong PENG,Han-duo YANG,Xue-yuan LU,Yan-wei LI. Effect of void characteristics on virtual shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
[3] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[4] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[5] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[6] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[7] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[8] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[9] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[10] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[11] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[12] Na WU,Jian ZHUANG,Ke⁃song ZHANG,Hui⁃xin WANG,Yun⁃hai MA. Compression mechanical properties and fracture mechanism of Scapharca Subcrenata shell [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 897-902.
[13] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[14] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[15] SI Wei, MA Biao, REN Jun-ping, WANG Hai-nian, GE-Sang Ze-ren. Analysis of asphalt pavement performance under freeze-thaw cycles using reliability method [J]. 吉林大学学报(工学版), 2016, 46(1): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!