Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 541-549.doi: 10.13229/j.cnki.jdxbgxb20200846

Previous Articles    

Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete

Quan-ping XIA1,2(),Jiang-ping GAO1(),Hao-yuan LUO3,Qi-gong ZHANG4,Zhi-jie LI5,Fei YANG6   

  1. 1.Highway School,Chang'an University,Xi'an 710064,China
    2.Shandong Transportation Service Center,Jinan 250002,China
    3.School of Transportation,Southeast University,Nanjing 211189,China
    4.Dongying Highway Development Center,Dongying 257091,China
    5.Shandong Jingjian Group Co. ,Ltd. ,Weifang 262100,China
    6.Shandong Academy of Communications Sciences,Jinan 250031,China
  • Received:2020-11-03 Online:2022-03-01 Published:2022-03-08
  • Contact: Jiang-ping GAO E-mail:xiaquanping@163.com;2227940211@qq.com

Abstract:

To find hard asphalts with perfect high temperature stability and low temperature crack resistance as the cementation material of high-modulus asphalt concrete, SBS modified asphalt was used to modify six kinds of natural hard asphalt. The relationship between the dosage of SBS and the dynamic modulus of the mixture was explored. The low-temperature performance of this hard asphalt before and after the modification was investigated from the three levels including asphalt, asphalt mortar and asphalt mixture. The results show that the low temperature performances of the modified asphalt, asphalt mortar, and mixture also have different degrees improvements. It is a good choice for producing high-modulus asphalt concrete. The study also found that among the many low-temperature performance evaluation indicators, low-temperature critical cracking temperature (TCR) of asphalt mortar is the most relevant to the test results of low-temperature bending of the mixture. When selecting asphalt binder for high-modulus asphalt concrete, special attention should be paid to this indicator.

Key words: road engineering, high modulus asphalt concrete, hard asphalt, low temperature crack resistance performance, rutting resistance, interfacial adhesion coefficient

CLC Number: 

  • U414

Table 1

Basic performance index of asphalts in study"

指标沥青型号测试方法
AL-50#IT-50#SP-50#SC-50#XJ-50#TZ-50#SBS-I
25 ℃针入度/(0.1 mm)49.247.061.656.254.142.740.3T0604
针入度指数PI0.8-1.00.1-1.8-0.170.550.31T0604
软化点/℃48.550.647.948.35362.587.5T0606
5 ℃延度/cm(SBS)------35T0605
10 ℃延度/cm7.210.28.017159-T0605
15 ℃延度/cm13.057.013.7>1008981-T0604
RTFOT质量变化-0.2-0.1-0.1-0.1-0.10.0-0.045T0610
残留针入度59.672.762.5626375.677.2T0604
10 ℃残留延度/cm4.14.84.83脆断脆断-T0605
5 ℃残留延度/cm(SBS)------20T0605
PG分级64-1670-1664-1664-2276-1682-1670-22AASHTO M320
英标针入度分级50/7040/6050/7050/7035/5030/4540/60EN 12591

Fig.1

Effect on dynamic modulus of mixture by dosage of SBS modified-asphalt"

Table 2

Basic performance index of composite modified asphalt"

指标沥青型号测试方法
AL-SBSIT-SBSSP-SBSSC-SBSXJ-SBSTZ-SBS
25 ℃针入度/(0.1 mm)343032412819T0604
针入度指数PI1.560.910.491.11.210.65T0604
软化点/℃81.185.681.379.69193.6T0606
英标针入度分级30/4530/4530/4530/4520/3010/20EN 12591

Fig.2

Low temperature ductility of 6 asphalt binders"

Fig.3

Performance grading of 6 asphalt binders"

Fig.4

Low-temperatures stress of 6 asphaltbinders and mortars"

Fig.5

Critical cracking temperature (TCR) of6 asphalt binders and mortars"

Fig.6

Comparison of interface adhesion betweenasphalt and filler in 6 asphalt mortars"

Table 3

Hamburg rutting properties of 6 highmodulus asphalt concrete"

沥青样品车辙深度/mm抗车辙性能排名技术要求
AL-50#6.210≤20
IT-50#19 000次后失效12
SP-50#5.37
SC-50#6.29
XJ-50#5.78
TZ-50#4.03
AL-SBS3.72
IT-SBS7.811
SP-SBS4.45
SC-SBS5.16
XJ-SBS4.24
TZ-SBS2.11

Table 4

Low temperature performance of six kindsof high modulus asphalt concrete"

沥青样品空隙率/%弯曲模量/MPa弯曲破坏应变εB/με低温弯曲性能排名
AL-50#2.8246925607
IT-50#2.63061169411
SP-50#2.53863171610
SC-50#1.8317931255
XJ-50#2.0318619899
TZ-50#2.43059145712
AL-SBS3.7275939982
IT-SBS2.9370328356
SP-SBS2.8357033844
SC-SBS2.5324142011
XJ-SBS2.4301138533
TZ-SBS2.8416724218
1 Yang Guang, Wang Xu-dong. Rationality of applying high-modulus asphalt concrete in long-life asphalt pavement with semi-rigid base[J]. Journal of Highway and Transportation Research and Development (English Edition), 2020, 14(2): 16-24.
2 曾学明. 埃塞AA高速公路高模量沥青混凝土基层施工技术探究[D]. 西安: 长安大学公路学院, 2015.
Zeng Xue-ming. Study on the expressway construction technology for high modulus asphalt mixture base course in addis ababa-adama, ethiopia[D]. Xi'an: Highway College, Chang'an University, 2015.
3 Chen Yu, Wang Han-ning, Xu Shi-bing, Y et al. High modulus asphalt concrete: a state-of-the-art review[J]. Construction and Building Materials, 2020, 237: No.117653.
4 卢桂林, 许新权, 唐志赟, 等. 高模量改性剂的作用机理及应用研究[J]. 建筑材料学报, 2021, 24(2): 355-361.
Lu Gu-lin, Xu Xin-Quan, Tang Zhi-yu, et al. Research on mechanism and application of high modulus agent[J]. Journal of Building Material, 2021, 24(2): 355-361.
5 Zhu Jun-qing, Ma Tao, Fan Jian-wei, et al. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement[J]. Journal of Cleaner Production, 2020, 263: No.121447.
6 . Essais statiques sur mélanges hydrocarbonés, part 1: essai DURIEZ sur mélanges hydrocarbonés à chaud [S].
7 Moghaddam T B, Baaj H. Rheological characterization of high-modulus asphalt mix with modified asphalt binders[J]. Construction and Building Materials, 2018, 193: 142-152.
8 Sybilski D, Wojciech B, Krajewski M. High modulus asphalt concrete with limestone aggregate[J]. International Journal of Pavement Research & Technology, 2010, 3(2): 96-101.
9 Zou X L, Sha A M, Jiang W, et al. Effects of modifier content on high-modulus asphalt mixture and prediction of fatigue property using weibull theory[J]. Road Materials & Pavement Design, 2017, 18(S3): 88-96.
10 王朝辉, 舒诚, 韩冰,等. 高模量沥青混凝土研究进展[J]. 长安大学学报: 自然科学版, 2020, 40(1): 1-15.
Wang Chao-hui, Shu Cheng, Han Bing, et al. Research progress of high modulus asphalt concrete[J]. Journal of Chang'an University(Natural Science Edition),2020,40(1):1-15.
11 熊锐, 乔宁, 褚辞, 等. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报: 工学版, 2020, 50(1): 183-190.
Xiong Rui, Qiao Ning, Chu Ci, et al. Investigation on low-temperature rheology and adhesionproperties of salt-doped asphalt mortars[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 183-190.
12 王林, 王晓燕. 山东在长寿命路面技术方面的探索[J]. 中国公路, 2020, 26(14): 33-35.
Wang Lin, Wang Xiao-yan. Exploration of long life pavement technology in Shandong Province[J]. Chinese Higway, 2020, 26(14): 33-35.
13 王晓燕, 王林, 付建村, 等. 欧美沥青路面技术比较研究与我国的工程实践[R]. 济南:山东省交通科学研究院, 2015.
14 韦大川, 王云鹏, 李世武, 等. 橡胶粉与SBS复合改性沥青路用性能与微观结构[J]. 吉林大学学报: 工学版, 2008, 38(3): 525-529.
Wei Da-chuan, Wang Yun-peng, Li Shi-wu, et al. Physical properties and microstructure of waste rubber powder and SBS complex modified asphalt[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(3): 525-529.
15 董雨明. 硬质沥青及其混合料流变特性与低温性能研究[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2015.
Dong Yu-ming. Research on rheological property and low temperature performance of hard grade bitumen and its mixture[D]. Harbin: School of Transportation Science and Institute of Technology, Harbin Institute of Technology, 2015.
16 LPC bituminous mixtures design guide[Z]. Laboratoire Central des Ponts et Chaussees,2010.
17 .公路工程沥青及沥青混合料试验规程 [S].
18 . 公路沥青路面施工技术规范 [S].
19 沈金安. 沥青及沥青混合料路用性能[M]. 北京:人民交通出版社, 2001.
20 Luo Hao-yuan, Leng Hui-kang, Ding Hai-bo, et al. Low-temperature cracking resistance, fatigue performance and emission reduction of a novel silica gel warm mix asphalt binder[J]. Construction and Building Materials, 2020, 231: No.117118.
21 R49—09. Determination of low-temperature performance grade (PG) of asphalt binders [S].
22 罗浩原, 黄晓明. 废油再生沥青二次老化后的性能与组分变化[J]. 中国公路学报, 2021, 34(10): 98-110.
Luo Hao-yuan, Huang Xiao-ming. Reseach on change of performance anc component of recycled oil regenerated asphalt during secondary aging[J]. China Journal of Highway Transportation, 2021, 34(10): 98-110.
23 Shenoy A. Single-event cracking temperature of asphalt pavements directly from bending beam rheometer data [J]. Journal of Transportation Engineering, 2002, 128(5): 465-471.
24 吴建涛. 基于流变特性的沥青与集料交互作用能力的研究[D]. 哈尔滨:哈尔滨工业大学交通科学与工程学院, 2009.
Wu Jian-tao. Studies on interaction capability of asphalt and aggregate based on rheological characteristics[D]. Harbin: School of Transportation Science and Institute of Technology, Harbin Institute of Technology, 2009.
25 AA . Standard method of test for hamburg wheel-track testing of compacted hot mix asphalt (HMA)[S].
[1] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
[2] Wu-ping RAN,Hui-min CHEN,Ling LI,Li-qun FENG. Evolution law and model estimation and modification of resilience modulus of coarse grained soil subgrade under wet and dry cycle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2079-2086.
[3] Zhe-pu XU,Qun YANG. Short⁃term maintenance operation start time optimization based on real⁃time traffic map data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1763-1774.
[4] Chang-ping WEN,Huan-xia REN. Constitutive relation with double yield surfaces of bioenzyme⁃treated expansive soil based on Lade model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1716-1723.
[5] Yuan-yuan WANG,Lu SUN,Wei-dong LIU,Jin-shun XUE. Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1342-1348.
[6] Yong PENG,Han-duo YANG,Xue-yuan LU,Yan-wei LI. Effect of void characteristics on virtual shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
[7] Wei-gang ZHU,Chao ZHU,Ya-qiu ZHANG,Hai-bin WEI. Construction and quality evaluation of digital elevation model based on convolution grid surface fitting algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1073-1080.
[8] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[9] Ya-feng GONG,Yun-ze PANG,Bo WANG,Guo-jin TAN,Hai-peng BI. Mechanical properties of new prefabricated box culvert structure based on road conditions in Jilin Province [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 917-924.
[10] En-hui YANG,Jia-qiu XU,You-zhi TANG,Ao LI,Yan-jun QIU. Effect of warm mixing agents on fracture and aging properties of asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 604-610.
[11] Wen-ting DAI,Ze-hua SI,Zhen WANG,Qi WANG. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
[12] Yu FANG,Li-jun SUN. Urban bridge performance decay model based on survival analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 557-564.
[13] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[14] Ping WAN,Chao-zhong WU,Xiao-feng MA. Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[15] Rui XIONG,Ning QIAO,Ci CHU,Fa YANG,Bo-wen GUAN,Yan-ping SHENG,Dong-yu NIU. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!