Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2698-2705.doi: 10.13229/j.cnki.jdxbgxb20210328

Previous Articles    

Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene

Si-feng ZHU1(),Ming-yang ZHAO1,Zheng-yi CHAI2()   

  1. 1.School of Computer and Information Engineering,Tianjin Chengjian University,Tianjin 300384,China
    2.School of Computer Science & Technology,Tiangong University,Tianjin 300387,China
  • Received:2021-04-15 Online:2022-11-01 Published:2022-11-16
  • Contact: Zheng-yi CHAI E-mail:zhusifeng@163.com;tgu_chaizhengyi@163.com

Abstract:

In order to meet the requirements of low delay and low energy consumption of user terminal equipment for intensive task processing in edge computing environment, the time delay model, energy consumption model and offloading optimization model were designed, and an offloading scheme based on improved particle swarm optimization algorithm was given, and the excellent performance of the proposed scheme was verified by experiments.Firstly, the PSO is improved and an improved particle swarm optimization (UPSO) algorithm is proposed. Secondly, by combining UPSO with Genetic algorithm (GA), an improved particle swarm optimization algorithm (GA-UPSO) is proposed to solve the unloading decision problem in the single-user multi-task scenario. The simulation results on Matlab show that the proposed offloading scheme is superior to the offloading scheme based on genetic algorithm and the offloading scheme based on standard particle swarm optimization algorithm in terms of time delay and energy consumption.

Key words: edge computing, computing offloading, time delay, energy consumption, genetic algorithm, particle swarm optimization algorithm

CLC Number: 

  • TP391

Fig.1

System model in edge computing scene"

Fig.2

Coding examples for 6 tasks"

Table 1

Parameter setting"

参数
B/MHz10~50
fj/GHz50~60
flc/GHz7
σ2/dBm10-9
PiD/dBm30~80
GA交叉概率pc0.8
GA变异概率pm0.05
c1c21.5
PSO惯性权重w0.8
算法迭代次数G50

Fig.3

Effect of increasing task on total delay"

Fig.4

Effect of increasing task on energy consumption"

Fig.5

Effect of MECS on system delay"

Fig.6

Effect of MECS on system energy consumption"

Fig.7

Effect of weight on system delay"

Fig.8

Effect of weight on system energy consumption"

1 谢人超, 廉晓飞, 贾庆民, 等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39(11): 138-155.
Xie Ren-chao, Lian Xiao-fei, Jia Qing-min, et al. Survey on computation offloading in mobile edge computing[J]. Journal of Communications, 2018, 39(11): 138-155.
2 Khan A R, Othman M, Madani S A, et al. A survey of mobile cloud computing application models[J]. IEEE Communications Surveys & Tutorials, 2014, 16(1): 393-413.
3 施巍松, 张星洲, 王一帆, 等. 边缘计算:现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89.
Shi Wei-song, Zhang Xing-zhou, Wang Yi-fan, et al. Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89.
4 Nasir A, Zhang Y, Taherkordi A, et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450-465.
5 Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656.
6 Bouet M, Conan V. Mobile edge computing resources optimization: a geo-clustering approach[J]. IEEE Transactions on Network and Service Management, 2018, 15(2): 787-796.
7 Carvalho G H S, Woungang I, Anpalagan A, et al. Analysis of joint parallelism in wireless and cloud domains on mobile edge computing over 5G systems[J]. Journal of Communications and Networks, 2018, 20(6): 565-577.
8 Tang L, He S B. Multi-user computation offloading in mobile edge computing: a behavioral perspective[J]. IEEE Network, 2018, 32(1): 48-53.
9 Wang F, Xu J, Wang X, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017, 17(3): 1784-1797.
10 夏士超, 姚枝秀, 鲜永菊, 等. 移动边缘计算中分布式异构任务卸载算法[J]. 电子与信息学报, 2020, 42(12): 2891-2898.
Xia Shi-chao, Yao Zhi-xiu, Xian Yong-ju, et al. A distributed heterogeneous task offloading methodology for mobile edge computing[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2891-2898.
11 芦效峰, 廖钰盈, Pietro L, 等. 一种面向边缘计算的高效异步联邦学习机制[J]. 计算机研究与发展, 2020, 57(12): 2571-2582.
Lu Xiao-feng, Liao Yu-ying, Pietro L, et al. An asynchronous federated learning mechanism for edge network computing[J]. Journal of Computer Research and Development, 2020, 57(12): 2571-2582.
12 张海波, 栾秋季, 朱江, 等. 基于移动边缘计算的V2X任务卸载方案[J]. 电子与信息学报, 2018, 40(11): 2736-2743.
Zhang Hai-bo, Luan Qiu-ji, Zhu Jiang, et al. V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2736-2743.
13 孟浩, 霍如, 郭倩影, 等. 基于机器学习的MEC随机任务迁移算法[J]. 北京邮电大学学报, 2019, 42(2): 25-30.
Meng Hao, Huo Ru, Guo Qian-ying, et al. Machine learning-based stochastic task offloading algorithm in mobile-edge computing[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(2):25-30.
14 Wu Y, Li P Q, Ni K J, et al. Delay-minimization nonorthogonal multiple access enabled multi-user mobile edge computation offloading[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 392-407.
15 张志宏,刘传领.基于灰狼算法优化深度学习网络的网络流量预测[J].吉林大学学报:理学版,2021,59(3):619-626.
Zhang Zhi-hong, Liu Chuan-ling. Grey wolf algorithm to optimize network traffic prediction of deep learning network[J]. Journal of Jilin University(Science Edition), 2021,59(3):619-626.
16 王彦琦,张强,朱刘涛,等.基于改进鲸鱼优化算法的GBDT回归预测模型[J].吉林大学学报:理学版,2022,60(2):401-408.
Wang Yan-qi, Zhang Qiang, Zhu Liu-tao, et al. GBDT regression prediction model based on improved whale optimization algorithm[J]. Journal of Jilin University (Science Edition),2022,60(2):401-408.
17 赵鹏程,高尚,于洪梅.基于多智能体深度强化学习的空间众包任务分配[J].吉林大学学报:理学版,2022,60(2):321-331.
Zhao Peng-cheng, Gao Shang, Yu Hong-mei. Spatial crowdsourcing task assignment based on multi-agent deep reinforcement learning[J]. Journal of Jilin University(Science Edition), 2022,60(2):321-331.
18 王宏志, 姜方达, 周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报: 工学版, 2019, 49(4): 1363-1368.
Wang Hong-zhi, Jiang Fang-da, Zhou Ming-yue. Power allocation of cognitive radio system based on genetic particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1363-1368.
19 王出航,王雪,胡黄水,等.基于改进GA和信任感知的无线传感器网络安全分簇路由协议[J].吉林大学学报:理学版,2021,59(5):1237-1244.
Wang Chu-hang, Wang Xue, Hu Huang-shui, et al. Secure clustering routing protocol based on improved GA and trust-aware for wireless sensor networks[J]. Journal of Jilin University(Science Edition), 2021,59(5):1237-1244.
20 胡黄水,姚美琴,王亮,等.基于改进的AP和遗传算法的能量感知分簇路由协议[J].吉林大学学报:理学版,2021,59(6):1525-1531.
Hu Huang-shui, Yao Mei-qin, Wang Liang, et al. Energy aware clustering routing protocol based on improved AP and genetic algorithm[J]. Journal of Jilin University(Science Edition), 2021,59(6):1525-1531.
[1] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[2] Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Da XIE. Time delay estimation of linear frequency-modulated continuous-wave lidar signals via SESTH [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 950-958.
[3] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[4] Cui-yu LI,Ya-meng HU,Ya-wei KANG,De-liang ZHANG. Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2508-2513.
[5] Chuan-hai CHEN,Guo-xiang YAO,Tong-tong JIN,Gui-xiang SHEN,Li-juan YU,Hai-long TIAN. Dynamic modeling and parameter updating of machine tool spindle system based on response surface methodology and genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2278-2286.
[6] Jian-xin FENG,Qiang WANG,Ya-lei WANG,Biao XU. Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1990-1996.
[7] Wen-long TENG,Bing-hu CONG,Yun-kun SHANG,Yu-chen ZHANG,Tian BAI. Modeling of building energy consumption prediction based on MEA⁃BP neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1857-1865.
[8] Zuo-an HU,Yi-ming XIA,Jia CAI,Feng XUE. Optimization of urban rail transit operation adjustment based on multiple strategies under delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1664-1672.
[9] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[10] Hong-fei JIA,Xin-ru DING,Li-li YANG. Bi-level programming model for optimization design of tidal lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 535-542.
[11] Fu-chun JIA,Xian-jie MENG,Yu-long LEI. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1969-1976.
[12] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[13] Hong⁃zhi WANG,Fang⁃da JIANG,Ming⁃yue ZHOU. Power allocation of cognitive radio system based on genetic particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1363-1368.
[14] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[15] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!