Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 531-537.doi: 10.13229/j.cnki.jdxbgxb20210640

Previous Articles     Next Articles

Conductive rubber composite pavement paving technology based on mechanical response analysis method

Hai-bin WEI1(),Zi-peng MA1,Hai-peng BI1(),Han-tao LIU2,Shuan-ye HAN1   

  1. 1.College of Transportation,Jilin University,Changchun 130022,China
    2.Zhongqing Construction Co. ,Ltd. ,Changchun 130022,China
  • Received:2021-07-08 Online:2023-02-01 Published:2023-02-28
  • Contact: Hai-peng BI E-mail:weihb@jlu.edu.cn;bihp@jlu.edu.cn

Abstract:

In order to determine the feasibility and optimal embedding conditions of conductive EPDM composite materials in pavement structure, the stress and strain curves of composite materials were studied by compression test, and a two-dimensional conductive EPDM composite pavement structure model was established by finite element software ANSYS. The mechanical response of the composite pavement structure with different embedding locations, embedding thicknesses and different loads of the composite material were analyzed and compared with the normal pavement structure respectively. The compression test results show that the composite material is mainly elastic in the presence of forces, with a modulus of elasticity of 30.6 MPa. The mechanical response results show that the composite material is feasible for use in pavement structures under reasonable assumptions and that the best location for embedding is under the asphalt concrete layer, with the smaller the embedment thickness the better. In the case of overloading, it is necessary to focus on the effect of shear stresses on the composite pavement structures. The results of this study can provide a reference for practical engineering applications of composite materials.

Key words: road engineering, composite material, deicing, finite element, mechanical response

CLC Number: 

  • U414

Fig.1

Flow chart of composite material preparation"

Table 1

Basic mechanical properties of composite materials"

属 性属性值
抗压强度/MPa13.78
拉伸强度/MPa6.44
撕裂强度/(kN·m-116.52
泊松比0.25

Fig.2

Compression test"

Table 2

Calculation parameters of road surface model"

结构层材料名称厚度 /cm弹性模量/MPa泊松比
上面层细粒式沥青混凝土417000.35
中面层中粒式沥青混凝土616000.35
下面层粗粒式沥青混凝土812000.35
基层水泥稳定砂砾3515000.25
垫层级配砂砾302000.25
土基--400.35
导电橡胶复合材料--0.25

Fig.3

Finite element model"

Fig.4

Composite stress-strain curve"

Fig.5

Vertical deformation diagram of composite pavement structure"

Fig.6

Mechanical response of pavement structure results"

Table 3

Mechanical response results data for different pavement structures"

结构类型竖向应力 /MPa竖向位移 /cm横向拉应力/MPa剪应力 /MPa
A-0.742 99-0.690 700.895 44-0.274 95
B-0.729 35-0.703 400.912 72-0.383 59
C-0.744 56-0.703 100.929 32-0.323 39
D-0.744 09-0.704 800.930 77-0.308 89

Table 4

Mechanical response results data for composite pavement structures at different thicknesses"

复合材料厚度/mm竖向应力 /MPa竖向位移 /cm横向拉应力/MPa剪应力 /MPa
5-0.744 08-0.702 000.928 19-0.302 97
6.5-0.744 09-0.704 800.930 77-0.308 89
8-0.744 11-0.707 600.932 44-0.314 25
10-0.744 13-0.711 100.935 96-0.320 74

Fig.7

Results of mechanical response of composite pavement structure under different loads"

1 苗广营,沈建青,仲玮年. 沥青路面除冰雪技术研究进展[J].筑路机械与施工机械化,2019,36(9): 18-22.
Miao Guang-ying, Shen Jian-qing, Zhong Wei-nian. Progress of research on deicing and snow removal technology for asphalt pavement[J]. Road Machinery & Construction Mechanization, 2019, 36(9): 18-22.
2 谭忆秋,张驰,徐慧宁,等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019, 32(4): 1-17.
Tan Yi-qiu, Zhang Chi, Xu Hui-ning, et al. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement[J]. Chinese Journal of Highways, 2019, 32(4): 1-17.
3 程刚,韩萍,杜素军. 融雪剂概况及存在的问题[J]. 山西交通科技, 2004(5): 45-46.
Cheng Gang, Han Ping, Du Su-jun. The discussion on the conditions and main problem of the deicer[J]. Shanxi science & Technology of communications, 2004(5): 45-46.
4 肖劲松,邹孟秋. 物理-化学综合融雪除冰沥青混合料研究[J]. 公路, 2017, 62(8): 248-252.
Xiao Jin-song, Zou Meng-qiu. Study of asphalt mixture for melting snow and ice by physical-chemical[J]. Highway, 2017, 62(8): 248-252.
5 冯新军,查旭东,程景. PAN基碳纤维导电沥青混凝土的制备及性能[J]. 中国公路学报, 2012, 25(2): 27-32.
Feng Xin-jun, Zha Xu-dong, Cheng Jing.Preparation and performance of PAN-based carbon fiber conductive asphalt concrete[J]. Chinese Journal of Highways, 2012, 25(2):27-32.
6 Ullah S, Yang C, Cao L P, et al. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings[J]. Construction and Building Materials, 2021, 303: 124446.
7 Mohammad A N, Arabzadeh A, Ceylan H, et al. Effect of carbon-fiber properties on volumetrics and ohmic heating of electrically conductive asphalt concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(9): 04019200.
8 武海琴. 发热电缆用于路面融雪化冰的技术研究[D]. 北京: 北京工业大学建筑工程学院, 2005.
Wu Hai-qin.A study of applied technology in deicing and melting snow on road surface by electric heating cable[D].Beijing:College of Architecture and Civil Engineering,Beijing University of Technology, 2005.
9 李荣清,王超,朱耀庭,等. 碳纤维发热线桥面铺装融雪化冰试验研究[J]. 中外公路, 2019, 39(6): 241-244.
Li Rong-qing, Wang Chao, Zhu Yao-ting, et al. Experimental study on snow melting and ice melting in carbon fiber hair hotline bridge deck paving[J]. Zhongwai Highway, 2019, 39(6): 241-244.
10 Xin S, Yong L, Yan L, et al. Research of deicing and melting snow on airport asphalt pavement by carbon fiber heating wire[J]. Advances in Materials Science and Engineering, 2020: 5209350.
11 袁玉卿,许海铭,张永健. 导电沥青混凝土发热性能实验研究[J]. 华中科技大学学报:自然科学版, 2014, 42(10): 128-132.
Yuan Yu-qing, Xu Hai-ming, Zhang Yong-jian. Experimental study on warming performance of conductive asphalt concrete[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2014, 42(10): 128-132.
12 Zhao H M, Wu Z M, Wang S G, et al. Concrete pavement deicing with carbon fiber heating wires[J]. Cold Regions Science and Technology, 2010, 65(3): 413-420.
13 Wei H B, Ma Z P, He X,et al. Structural response analysis of conductive ethylene-propylene-diene monomer rubber composite pavement under validated temperature field[J]. Construction and Building Materials, 2022, 328: 127094.
14 Wei H B, Ma Z P, Han L L, et al. Durability of conductive ethylene-propylene-diene monomer rubber composite with active deicing and snow melting under vehicle load[J]. Journal of Materials in Civil Engineering, 2022, 34(5): 04022055.
15 . 硫化橡胶或热塑性橡胶压缩应力应变性能的测定 [S].
16 姬豪杰,谢海巍,刘尊青. 基于有限元ANSYS的半刚性基层沥青路面力学响应分析[J]. 科学技术与工程, 2021, 21(12): 5092-5097.
Ji Hao-jie, Xie Hai-wei, Liu Zun-qing. Mechanical response analysis of semi-rigid asphalt pavement based on finite element ANSYS[J]. Science Technology and Engineering,2021, 21(12): 5092-5097.
17 . 公路沥青路面设计规范 [S].
18 吴玉,蒋鑫,梁雪娇,等. 轮载作用下典型沥青路面结构力学行为分析[J]. 西南交通大学学报, 2017, 52(3): 563-570.
Wu Yu, Jiang Xin, Liang Xue-jiao, et al. Mechanical behaviours of typical asphalt pavement structures under wheel loads[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 563-570.
[1] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[2] Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155.
[3] Zhong-hua SHI,Quan-wei SONG,Zhen-hang KANG,Qiang XIE,Ji-feng ZHANG. Numerical simulation and experiment on ultrasonic deicing system of airfoil structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1561-1573.
[4] Guo-jun YANG,Qi-wei TIAN,Ming-hang LYU,Yong-feng DU,Guang-wu TANG,Zong-jian HAN,Yi-duo FU. Review of mechanic characteristics of tunnel⁃type anchorage of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1245-1263.
[5] Qing-lin GUO,Qiang LIU,Chun-li WU,Li-li LI,Yi-ming LI,Fu-chun LIU. Local temperature field and healing level of crack in conductive asphalt and mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1386-1393.
[6] Cheng-lin SHI,Yong WANG,Chun-li WU,Wen-zhu SONG. Modification of calculation method for active earth pressure on embankment retaining wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1394-1403.
[7] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
[8] Wei LI,Hai-sheng SONG,Hao-yu LU,Wen-ku SHI,Qiang WANG,Xiao-jun WANG. Linear identification method of hysteresis characteristic of composite leaf springs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 829-836.
[9] Yu-quan YAO,Jian-gang YANG,Jie GAO,Liang SONG. Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 585-595.
[10] Quan-ping XIA,Jiang-ping GAO,Hao-yuan LUO,Qi-gong ZHANG,Zhi-jie LI,Fei YANG. Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 541-549.
[11] Fen YE,Shi-yuan HU. Mechanical properties of ultra⁃thin overlay considering load transfer capacity of old cement pavement joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2636-2643.
[12] Yan-hai YANG,Hong CUI,Ye YANG,Huai-zhi ZHANG,He LIU. Effect of freeze-thaw cycle on performance of unsaturated emulsified asphalt cold recycled mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2352-2359.
[13] Xiao-he YU,Rong LUO,Zi-yao LIU,Ting-ting HUANG,Yu SHU. Numerical simulation of humidity field of typical cracks in asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2343-2351.
[14] Yu-xuan WEI,Ming ZHANG,Jia LIU,Shuo LIU,Ming-yu LU,Hong-yu WANG. Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 91-100.
[15] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .