Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (3): 802-809.doi: 10.13229/j.cnki.jdxbgxb20221254
Bo TAO1,2,3,4,5(),Fu-wu YAN1,2,3,4,5,Zhi-shuai YIN1,2,3,4,5(),Dong-mei WU1,3,4,5
CLC Number:
1 | Levinson J, Askeland J, Becker J, et al. Towards fully autonomous driving: systems and algorithms[C]∥2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 163-168. |
2 | Tan M, Pang R, Le Q V. Efficientdet: scalable and efficient object detection[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 10781-10790. |
3 | Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 2117-2125. |
4 | Zhao Q, Sheng T, Wang Y, et al. M2det: a single-shot object detector based on multi-level feature pyramid network[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 2019: 9259-9266. |
5 | Cai Z, Vasconcelos N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498. |
6 | Shi S, Wang Z, Shi J, et al. From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(8): 2647-2664. |
7 | He C, Zeng H, Huang J, et al. Structure aware single-stage 3D object detection from point cloud[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 11873-11882. |
8 | Zhou Y, Tuzel O. Voxelnet: end-to-end learning for point cloud based 3D object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 4490-4499. |
9 | Yin T, Zhou X, Krahenbuhl P. Center-based 3D object detection and tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,2021: 11784-11793. |
10 | Lang A H, Vora S, Caesar H, et al. Pointpillars: fast encoders for object detection from point clouds[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 12697-12705. |
11 | Qi C R, Su H, Mo K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 652-660. |
12 | Chen X, Ma H, Wan J, et al. Multi-view 3D object detection network for autonomous driving[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 1907-1915. |
13 | Ku J, Mozifian M, Lee J, et al. Joint 3D proposal generation and object detection from view aggregation[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 1-8. |
14 | Liang M, Yang B, Wang S, et al. Deep continuous fusion for multi-sensor 3D object detection[C]∥Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 641-656. |
15 | Liang M, Yang B, Chen Y, et al. Multi-task multi-sensor fusion for 3D object detection[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 7345-7353. |
16 | Xu D, Anguelov D, Jain A. Pointfusion: deep sensor fusion for 3D bounding box estimation[C]∥Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA: IEEE, 2018: 244-253. |
17 | Xie L, Xiang C, Yu Z, et al. PI-RCNN: an efficient multi-sensor 3D object detector with point-based attentive cont-conv fusion module[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 2020: 12460-12467. |
18 | Pang S, Morris D, Radha H. CLOCs: Camera- L i D A R object candidates fusion for 3D object detection[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020: 10386-10393. |
19 | Seif H G, Hu X. Autonomous driving in the iCity—HD maps as a key challenge of the automotive industry[J]. Engineering, 2016, 2(2): 159-162. |
20 | Chen Y F, Liu S Y, Liu M, et al. Motion planning with diffusion maps[C]∥2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016: 1423-1430. |
21 | Caesar H, Bankiti V, Lang A H, et al. Nuscenes: a multimodal dataset for autonomous driving[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 11621-11631. |
22 | Gong L, Wang S, Zhang Y, et al. Lightweight map-enhanced 3D object detection and tracking for autonomous driving[C]∥12th Asia-Pacific Symposium on Internetware, Singapore Singapore, 2020: 165-174. |
23 | Yang B, Liang M, Urtasun R. HDNet: exploiting hd maps for 3D object detection[C]∥Conference on Robot Learning,Zürich, Switzerland, 2018: 146-155. |
24 | Yan Y, Mao Y, Li B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337-3354. |
25 | Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 11976-11986. |
26 | Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 2021: 10012-10022. |
27 | Ba J L, Kiros J R, Hinton G E. Layer normalization[J/OL]. [2022-09-20]. |
28 | Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥International Conference on Machine Learning, Lile, France, 2015: 448-456. |
29 | Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J/OL].[2022-09-20]. .net/publication/215616967_Deep_Spars⁃e_Rectifier_Neural_Networks |
30 | Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 10(6): 679-698. |
31 | Zhang Z, Sabuncu M. Generalized cross entropy loss for training deep neural networks with noisy labels[J]. Advances in Neural Information Processing Systems, 2018, 31(5): 135-146. |
32 | Loshchilov I, Hutter F. Decoupled weight decay regularization[J/OL]. [2022-09-23]. |
33 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770-778. |
34 | 杨怀江, 王二帅, 隋永新, 等. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报: 工学版, 2022, 52(6): 1413-1421. |
Yang Huai-jiang, Wang Er-shuai, Sui Yong-xin, et al. Simplified residual structure and fast deep residual networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1413-1421. | |
35 | 申铉京, 张雪峰, 王玉, 等. 像素级卷积神经网络多聚焦图像融合算法[J]. 吉林大学学报: 工学版, 2022, 52(8): 1857-1864. |
Shen Xuan-jing, Zhang Xue-feng, Wang Yu, et al. Multi⁃focus image fusion algorithm based on pixel⁃level convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1857-1864. |
[1] | Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662. |
[2] | Zhen-yu WU,Xiao-fei LIU,Yi-pu WANG. Trajectory planning of unmanned system based on DKRRT*⁃APF algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 781-791. |
[3] | Hong-yang PAN,Zhao LIU,Bo YANG,Geng SUN,Yan-heng LIU. Overview of swarm intelligence methods for unmanned aerial vehicle systems based on new⁃generation information technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 629-642. |
[4] | Peng GUO,Wen-chao ZHAO,Kun LEI. Dual⁃resource constrained flexible job shop optimal scheduling based on an improved Jaya algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 480-487. |
[5] | Jin-Zhen Liu,Guo-Hui Gao,Hui Xiong. Multi⁃scale attention network for brain tissue segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 576-583. |
[6] | Xiao-hu SHI,Jia-qi WU,Chun-guo WU,Shi CHENG,Xiao-hui WENG,Zhi-yong CHANG. Residual network based curve enhanced lane detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 584-592. |
[7] | Xian-yu QI,Wei WANG,Lin WANG,Yu-fei ZHAO,Yan-peng DONG. Semantic topological map building with object semantic grid map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 569-575. |
[8] | Feng-feng ZHOU,Hai-yang ZHU. SEE: sense EEG⁃based emotion algorithm via three⁃step feature selection strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1834-1841. |
[9] | Fu-heng QU,Tian-yu DING,Yang LU,Yong YANG,Ya-ting HU. Fast image codeword search algorithm based on neighborhood similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1865-1871. |
[10] | Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880. |
[11] | Gui-he QIN,Jun-feng HUANG,Ming-hui SUN. Text input based on two⁃handed keyboard in virtual environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1881-1888. |
[12] | Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665. |
[13] | Feng-feng ZHOU,Yi-chi ZHANG. Unsupervised feature engineering algorithm BioSAE based on sparse autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1645-1656. |
[14] | Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427. |
[15] | Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433. |
|