Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (4): 1163-1173.doi: 10.13229/j.cnki.jdxbgxb.20210792

Previous Articles    

Approach for generating minimal fault detectability and isolability set in dynamic system based on partial maximum satisfiability problem

Dan-tong OUYANG1,2(),Rui SUN2,3,Xin-liang TIAN1,2,Li-ming ZHANG1,2(),Ping-ping LIU1,2   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
    3.College of Software,Jilin University,Changchun 130012,China
  • Received:2021-08-18 Online:2023-04-01 Published:2023-04-20
  • Contact: Li-ming ZHANG E-mail:ouyangdantong@163.com;limingzhang@jlu.edu.cn

Abstract:

Selecting fault detectability and isolability set (FDIS) that can detect and isolate all faults is an important step in model-based fault detection and isolation of dynamic systems. This step usually requires the minimal cardinality of FDIS, that is, generating minimal fault detectability and isolability set (MFDIS). The solution time of MFDIS increases exponentially with the increase of the scale of the problem. BILP complete method is the most common and efficient method to generate MFDIS in dynamic systems, but the efficiency of this method needs to be improved, and the complete solution of large-scale cases can’t be obtained in an acceptable time. In this paper, an approach for generating MFDIS based on partial maximum satisfiability problem (PMS) is proposed for the first time. The concept of MSO equivalent set is proposed, and some MSO sets are represented by MSO equivalent set to reduce the size of the problem. Then, the MFDIS genarating problem is transformed to PMS problem to improve the solving efficiency. The experimental results show that the proposed reduction method reduces the problem size to 8.22% of the original size on average; compared with BILP method, the efficiency of the proposed method is increased by 4.72 times on average.

Key words: model-based diagnosis, fault diagnosis, sensor selection, fault diagnosability analysis, partial maximum satisfiability problem

CLC Number: 

  • TP306

Fig.1

Four-tank system"

Table 1

Selected MSOs of four-tank system"

MSO方程集故障集
MSO59

e2,e5,e6,e8,e12,e13,e14,

e15,e16,e20

f2,f4,f5
MSO68

e2,e5,e6,e7,e9,e12,e13,

e14,e15,e17,e18,e19,e20

f2,f3,f5,f6
MSO79

e1,e3,e4,e5,e7,e9,e10,

e12,e13,e14,e15,e17,e18

e19,e20

f1,f3,f5,f6
MSO90

e1,e3,e4,e5,e7,e8,e9,

e11,e12,e14,e15,e16

f1,f3,f4
MSO151

e1,e2,e3,e4,e5,e8,e11,e12,

e14,e15,e17,e18,e19,e20

f1,f2,f4,f6

Table 2

Detectablity attribute of MSOs"

MSO方程集故障集
MSO1e16,e17,e18,e19,e20f6
MSO2

e11,e12,e13,e14,e15,e17,

e18,e19,e20

f5,f6
MSO3e11,e12,e13,e14,e15,e16,e20f5
MSO4

e8,e10,e12,e13,e14,e15

e17,e18,e19,e20

f4,f5,f6
MSO5

e8,e10,e12,e13,e14,e15,e16,

e20

f4,f5
MSO6

e8,e10,e11,e13,e16,e17,e18,

e19

f4,f6

Fig.2

Convert MSO set to WCNF file"

Table 3

Clauses generated from Table1"

硬子句软子句
Weight子句Weight子句
71 6 01-1 0
71 2 01-2 0
73 5 01-3 0
72 3 01-4 0
72 3 4 5 01-5 0
75 01-6 0
76 0

Fig.3

DM decomposition of 12-tank tank system"

Table 4

Number of nodes in list"

故障个数MSO等价集 平均数约简百分比/%
75699.05
88698.55
911398.09
1015597.38
1119596.71
1227195.42
1334694.16
1446192.22
1556190.53
1671088.01
1787685.21
18104482.37

Table 5

Mean execution times for QMaxSAT and BILP"

故障个数集合覆盖 规模BILPQMaxSAT提升 百分比
7(42, 5 923)2129.5
8(56, 5 923)1 0481277.25
9(72, 5 923)1 8692436.69
10(90, 5 923)12 2851 8465.65
11(110, 5 923)24 1354 6574.18

Table 6

Mean execution time for QMaxSAT with compaction"

Fault numberHitting set propertySPHSBILPQMaxSAT

Increased

efficiency

7(42, 56.4)18.030.030.00214
8(56, 74.1)173.430.050.0095.08
9(72, 100.6)32 876.340.090.060.56
10(90, 173.7)time out0.250.180.40
11(110, 224.8)time out0.530.370.45
12(132, 284)time out3.220.673.80
13(156, 341.9)time out112.563.30
14(182,469.6)time out40122.33
15(210,540.5)time out288792.65
16(240,673.2)time out9271585.87
17(272,877.6)time out1 4622644.54
18(306,1 044)time out2 6495703.65
1 Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 636-653.
2 De Kleer J, Williams B C. Diagnosing multiple faults[J]. Artificial Intelligence, 1987, 32(1): 97-130.
3 欧阳丹彤, 刘伯文, 刘梦, 等. 结合电路结构基于分块的诊断方法[J]. 电子学报, 2018, 46(7): 38-44.
Ouyang Dan-tong, Liu Bo-wen, Liu meng, et al. A block-based diagnostic method combinbing with the circuit structure[J]. Acta Electronica Sinica, 2018, 46(7): 38-44.
4 Svard C, Nyberg M, Frisk E, et al. Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application[J]. IEEE Transactions on Systems, 2013, 43(6): 1354-1369.
5 Falkenberg T, Gregersen R, Blanke M. Navigation system fault diagnosis for underwater vehicle[J].IFAC-Papers on Line, 2014, 47(3): 9654-9660.
6 Svard C, Nyberg M. Automated design of an FDI-system for the wind turbine benchmark [J]. IFAC-Papers on Line, 2011, 44(1): 8307-8315.
7 Jung D. A generalized fault isolability matrix for improved fault diagnosability analysis[C]//The 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 2016: 519-524.
8 Sankavaram C, Kodali A, Pattipati K R, et al. Incremental classifiers for data-driven fault diagnosis applied to automotive systems[J]. IEEE Access, 2015, 3: 407-419.
9 Jung D, Sundström C. A combined data-driven and model-based residual selection algorithm for fault detection and isolation[J]. IEEE Transactions on Control Systems, 2019, 27(2): 616-630.
10 Frisk E, Krysander M. Residual selection for consistency based diagnosis using machine learning models[J]. IFAC-Papers on Line, 2018, 51(24): 139-146.
11 Jung D, Frisk E. Residual selection for fault detection and isolation using convex optimization[J]. Automatica, 2018, 97: 143-149.
12 田乃予, 欧阳丹彤, 刘梦, 等. 基于子集一致性检测的诊断解极小性判定方法[J]. 计算机研究与发展, 2019, 56(7): 1396-1407.
Tian Nai-yu, Ouyang Dan-tong, Liu Meng, et al. A method of minimality-checking of fiagnosis based on subset consistency detection[J]. Journal of Computer Research and Development, 2019, 56(7): 1396-1407.
13 Nejjari A F, Sarrate E R, Rosich O A.Optimal sensor placement for fuel cell system diagnosis using BILP formulation[C]∥The 18th Mediterranean Conference on Control and Automation, Marrakech, Morocco, 2010: 1296-1301.
14 Khorasgani H, Biswas G. Structural fault detection and isolation in hybrid systems[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(4): 1585-1599.
15 Pérez-Zuiga G, Rivas-Perez R, Sotomayor J, et al. Fault detection and isolation system based on structural analysis of an industrial seawater reverse osmosis desalination plant[J]. Processes, 2020, 8(9): 1100.
16 Khorasgani H, Biswas G, Jung D. Minimal structurally overdetermined sets selection for distributed fault detection[C]∥Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, 2015: 75-82.
17 Krysander M, Åslund J, Nyberg M. An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[J]. IEEE Trans on Systems,Man and Cybernetics–Part A: Systems and Humans, 2008, 38(1): 197-206.
18 Svard C, Nyberg M. Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems[J]. IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans, 2010, 40(6): 1310-1328.
19 Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and fault-tolerant control[M]. Berlin: Springer, 2006.
20 Krysander M, Åslund J, Frisk E. A structural algorithm for finding testable sub-models and multiple fault isolability analysis[C]∥The 21st International Workshop on Principles of Diagnosis (DX-10), Portland, USA, 2010:
21 Reiter R. A theory of diagnosis from first principles [J].Artificial Intelligence, 1987, 32(1): 57-96.
22 Frisk E, Krysander M, Jung D. A toolbox for analysis and design of model based diagnosis systems for large scale models[J]. IFAC-Papers on Lines, 2017, 50(1): 3287-3293.
23 Robinson J A, Davis M, Logemann G, et al. A machine program for theorem-proving[J]. Journal of Symbolic Logic, 1967, 32(1): 118-394.
24 Cai S W, Luo C, Zhang H. From decimation to local search and back: a new approach to MaxSAT[C]∥Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne,Australia, 2017: 571-577.
25 刘思光, 欧阳丹彤, 王艺源,等. 结合SE-Tree结构特征的极小碰集求解算法[J]. 计算机研究与发展, 2016, 53(11): 2556-2566.
Liu Si-guang, Ouyang Dan-tong, Wang Yi-yuan, et al. Minimal collision set solving algorithm combined with SE-Tree structural features[J]. Journal of Computer Research and Development,2016, 53(11): 2556-2566.
26 Koshimura M, Zhang T, Fujita H, et al. Qmaxsat: a partial max-sat solver[J]. Journal on Satisfiability Boolean Modeling & Computation,2012,8(1/2): 95-100.
27 Dulmage A L, Mendelsohn N S. Coverings of bipartite graphs[J]. Canadian Journal of Mathematics, 1958, 10: 517-534.
[1] Dan-tong OU-YANG,Rui SUN,Xin-liang TIAN,Bo-han GAO. Set blocking⁃based approach to sensor selection in uncertain systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 547-554.
[2] Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496.
[3] Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
[4] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[5] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[6] Fei-yue DENG, LYUHao-yang,Xiao-hui GU,Ru-jiang HAO. Fault diagnosis of high⁃speed train axle bearing based on a lightweight neural network Shuffle⁃SENet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482.
[7] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[8] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[9] Xian-jun DU,Liang-liang JIA. Fault diagnosis of rolling bearing based on optimized stacked denoising auto encoders [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2827-2838.
[10] Fei CHEN,Zheng YANG,Zhi-cheng ZHANG,Wei LUO. Fault diagnosis method of rotating machinery for unlabeled data [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2514-2522.
[11] Jie CAO,Zhi-Dong HE,Ping YU,Jin-hua WANG. Bearing fault diagnosis method under unbalanced data distribution [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2523-2531.
[12] Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153.
[13] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[14] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[15] Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!