Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (7): 2067-2077.doi: 10.13229/j.cnki.jdxbgxb.20211010

Previous Articles    

Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression

Tao MA(),Yuan MA,Xiao-ming HUANG   

  1. School of Transportation,Southeast University,Nanjing 211189,China
  • Received:2021-10-05 Online:2023-07-01 Published:2023-07-20

Abstract:

In this paper, through the secondary development of the finite element numerical simulation software, the numerical simulation was refined to model and designed the working conditions, which provide the basic data of the optimal combination of key parameters, and verified its accuracy through field tests. On this basis, the parameters affecting compaction quality were fitted by multiple nonlinear regression method. Then, the construction parameters corresponding to the maximum compaction quality can be obtained by linear search method. The results show that the rolling speed of 4 m/s, rolling passes for 2 times, the corresponding minimum final compaction degree, is 0.878, at the same time, the rolling speed of 1 m/s, rolling passes for 4 times, the corresponding final compaction degree is the largest, 0.955. The conclusions are as follows: the combination of construction parameters to achieve the optimal compaction degree is: rolling speed 1.3 m/s, rolling times 4 times.

Key words: road engineering, intelligent compaction, feedback regulation mechanism, finite element redevelopment, final compaction degree, optimal parameter combination

CLC Number: 

  • U416

Table 1

Test results of compaction degree, cohesionand internal friction angle"

实时压实度K黏聚力c/kPa内摩擦角φ/(°)
0.8012.127.0
0.8541.228.8
0.9058.631.2
0.9361.630.5
0.9462.832.4
0.9663.634.3
1.0074.936.9

Table 2

"Field" compaction degree K corresponds toshear strength of soil"

压实度K黏聚力c/kPa内摩擦角φ/(°)
0.8026.414.2
0.8126.919.5
0.8227.324.4
0.8327.829.2
0.8428.333.7
0.8528.737.9
0.8629.241.9
0.8729.745.6
0.8830.149.1
0.8930.652.4
0.9031.155.3
0.9131.558.1
0.9232.060.6
0.9332.562.8
0.9432.964.8
0.9533.466.5
0.9633.968.0
0.9734.369.3
0.9834.870.3
0.9935.371.0
1.0035.771.5

Fig.1

Roadbed structure"

Table 3

Parameters of initial compaction state of subgrade soil"

层位密度ρ/(kg·m-3弹性模量E/MPa黏聚力c/kPa摩擦角φ/(°)泊松比
上层松铺16341511.88270.33
下层地基18593055.831.150.35

Fig.2

Finite element numerical simulation griddivision diagram"

Table 4

Finite element numerical simulation conditions"

编号碾压速度/(m·s-1碾压遍数编号碾压速度/(m·s-1碾压遍数
No.11.02No.122.54
No.21.03No.133.02
No.31.04No.143.03
No.41.52No.153.04
No.51.53No.163.52
No.61.54No.173.53
No.72.02No.183.54
No.82.03No.194.02
No.92.04No.204.03
No.102.52No.214.04
No.112.53

Fig.3

Subgrade vibration compaction field test"

Table 5

Vibratory roller parameters"

参数数值参数数值
压路机型号YZ32前/后轮质量/t21/11
频率/Hz28/33速度/(km·h-10~8
名义振幅/mm1.8/1.1额定转速/(rad·min-12200
激振力幅值/kN590/450振动轮宽度/mm2000
总质量/t32振动轮半径/mm600

Fig.4

Vertical displacement versus time curve and trend of compaction degree"

Fig.5

Error bar plot of compaction variation in fieldtest versus numerical simulation of compactionvariation"

Table 6

Final compaction degree corresponding toeach parameter"

速度/(m·s-1遍数
234
1.00.9330.9480.955
1.50.9310.9410.949
2.00.9390.9480.954
2.50.9220.9340.944
3.00.9040.9240.937
3.50.8870.9020.918
4.00.8780.8960.903

Fig.6

Curve between speed and compaction degree and curve between compaction passes and compaction degree"

Fig.7

Contour plot of final compaction degree"

Fig.8

Relation curve of compaction degree versus rolling speed"

1 Vennapusa P K R, White D J, Schram S. Roller-integrated compaction monitoring for hot-mix asphalt overlay construction[J]. Journal of Transportation Engineering, 2013, 139(12): 1164-1173.
2 Xu Q, Chang G K. Evaluation of intelligent compaction for asphalt materials[J]. Automation in Construction, 2013, 30: 104-112.
3 Xu Q, Chang G K, Gallivan V L. Development of a systematic method for intelligent compaction data analysis and management[J]. Construction and Building Materials, 2012, 37: 470-480.
4 Chen T, Ma T, Huang X, et al. Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture[J]. Journal of Cleaner Production, 2020, 263:No.121467.
5 Zhu J, Ma T, Fan J, et al. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement[J]. Journal of Cleaner Production, 2020, 263: No.121447.
6 Ding X, Chen L, Ma T, et al. Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder[J]. Construction and Building Materials, 2019, 203: 552-557.
7 赵秀璞. 路基智能压实控制技术研究[D].西安: 长安大学机械工程学院, 2016.
Zhao Xiu-pu. Study on intelligent compaction control technology of subgrade[D]. Xi'an: College of Mechanical Engineering, Chang'an University, 2016.
8 陈博. 路基土压实度实时检测系统研究[D]. 西安: 长安大学机械工程学院, 2019.
Chen Bo. Research on real-time detection system of subgrade compaction degree[D]. Xi'an: College of Mechanical Engineering,Chang'an University, 2019.
9 Minchin R E, Thomas H R. Validation of vibration-based onboard asphalt density measuring system[J]. Journal of Construction Engineering and Management-ASCE, 2003, 129(1): 1-7.
10 赵海杰. 路基压实质量评价指标的研究[D]. 西安: 长安大学机械工程学院, 2015.
Zhao Hai-jie. Study on the evaluation index of roadbed compaction quality[D]. Xi'an: College of Mechanical Engineering, Chang'an University, 2015.
11 焦倓, 聂志红, 王翔. 基于连续压实质量检测的压实薄弱区域评价指标研究[J]. 铁道学报, 2015, 37(8): 66-71.
Jiao Tan, Nie Zhi-hong, Wang Xiang. Evaluation of compaction weak areas based on continuous compaction quality detction[J]. Journal of the China Railway Society, 2015, 37(8): 66-71.
12 崔浩. 基于智能压实技术对填筑体路基压实度试验研究[D]. 保定: 河北大学建筑工程学院, 2017.
Cui Hao. Based on intelligent compaction technology of filling roadbed compaction degree test research[D]. Baoding: College of Civil Engineering and Architecture, Hebei University,2017.
13 郝飞. “振动轮⁃土壤”模型的有限元分析[D]. 西安: 长安大学机械工程学院, 2007.
Hao Fei. Finite element analysis of "vibration wheel-soil" model[D]. Xi'an: College of Mechanical Engineering,Chang'an University, 2007.
14 庞国强,苟桂枝. 冲击压路机压实效果的有限元分析法[J]. 机械管理开发, 2003(4): 16-17.
Pang Guo-qiang, Gou Gui-zhi. Finite element analysis method for compaction effect of impact rollers[J]. Mechanical Management and Development, 2003(4): 16-17.
15 Liu D, Lin M, Li S. Real-Time Quality Monitoring and Control of Highway Compaction[J]. Automation in Construction, 2016, 62: 114-123.
16 Zhang Q, Liu T, Zhang Z, et al. Unmanned rolling compaction system for rockfill materials[J]. Automation in Construction, 2019, 100: 103-117.
17 吴泽兵, 张帅, 郭龙龙, 等. ABAQUS二次开发在Pdc单齿破岩仿真中的应用[J]. 西安石油大学学报:自然科学版, 2020, 35(1): 104-109.
Wu Ze-bing, Zhang Shuai, Guo Long-long, et al. Application of ABAQUS secondary development in rock breaking simulation of PDC cutter[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020,35(1):104-109.
18 陈飞, 王成雨, 李伟刚, 等. Abaqus二次开发在航空弓形结构件喷丸强化模拟中的应用[J]. 计算机辅助工程, 2020, 29(2): 55-60.
Chen Fei, Wang Cheng-yu, Li Wei-gang, et al. Application of Abaqus secondary development in shot peening strengthening of aerospace arc-shaped frame[J]. Computer Aided Engineering,2020,29(2):55-60.
19 Hu W, Jia X, Zhu X, et al. Influence of moisture content on intelligent soil compaction[J]. Automation in Construction, 2020, 113: No.103141.
20 Ma Y, Luan Y, Zhang W, et al. Numerical simulation of intelligent compaction for subgrade construction[J]. Journal of Central South University, 2020, 27(Sup.1): 2173-2184.
21 马源, 方周, 韩涛, 等. 路基智能压实关键控制参数动态仿真及演变规律[J]. 中南大学学报:自然科学版, 2021, 52(7): 2246-2257.
Ma Yuan, Fang Zhou, Han Tao, et al. Dynamic simulation and evolution of key control parameters for intelligent compaction of subgrade[J]. Journal of Central South University(Science and Technology), 2021, 52(7): 2246-2257.
22 闫星宇. 函数型线性回归的若干研究[D]. 上海: 华东师范大学统计学院, 2020.
Yan Xing-yu. Some studies on functional linear regression[D]. Shanghai: School of Statistics, East China Normal University, 2020.
23 陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京:中国水利水电出版社, 2009:220-222.
24 滕显飞. 黄泛区粉土路基强夯加固数值分析与质量控制技术研究[D]. 济南: 山东大学土建与水利学院,2017.
Teng Xian-fei. Numerical analysis and quality control of dynamic consolidation of silty soil subgrade in Yellow River alluvial plain[D]. Jinan: School of Civil Engineering, Shandong University,2017.
25 徐群. 非线性回归分析的方法研究[D]. 安徽:合肥工业大学数学学院, 2009.
Xu Qun. The research on non-linear regression analysis methods[D]. Anhui: School of Mathematics, Hefei University of Technology,2009.
26 周大力. 基于Laplace机制的差分隐私回归分析相关优化研究[D]. 哈尔滨: 黑龙江大学数据科学与技术学院, 2018.
Zhou Da-li. Research on correlation optimization of differential privacy regression analysis based on Laplace mechanism[D]. Harbin: School of Data Science and Technology, Heilongjiang University, 2018.
27 White D J, Vennapusa P K R, Gieselman H H. Field assessment and specification review for roller-integrated compaction monitoring technologies[J]. Advances in Civil Engineering, 2011(1): No.783836.
[1] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[2] Sui-ning ZHENG,Rui HE,Tian-yu LU,Zi-yi XU,Hua-xin CHEN. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1381-1389.
[3] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
[4] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[5] Bo-wen GUAN,Wen-jin DI,Fa-ping WANG,Jia-yu WU,Shuo-wen ZHANG,Zhi-xun JIA. Damage of concrete subjected to sulfate corrosion under dry⁃wet cycles and alternating loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1112-1121.
[6] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[7] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[8] Cheng-lin SHI,Yong WANG,Chun-li WU,Wen-zhu SONG. Modification of calculation method for active earth pressure on embankment retaining wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1394-1403.
[9] Qing-lin GUO,Qiang LIU,Chun-li WU,Li-li LI,Yi-ming LI,Fu-chun LIU. Local temperature field and healing level of crack in conductive asphalt and mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1386-1393.
[10] Yu-quan YAO,Jian-gang YANG,Jie GAO,Liang SONG. Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 585-595.
[11] Quan-ping XIA,Jiang-ping GAO,Hao-yuan LUO,Qi-gong ZHANG,Zhi-jie LI,Fei YANG. Low⁃temperature performance of composite modified hard asphalt used in high modulus asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 541-549.
[12] Fen YE,Shi-yuan HU. Mechanical properties of ultra⁃thin overlay considering load transfer capacity of old cement pavement joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2636-2643.
[13] Xiao-he YU,Rong LUO,Zi-yao LIU,Ting-ting HUANG,Yu SHU. Numerical simulation of humidity field of typical cracks in asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2343-2351.
[14] Yan-hai YANG,Hong CUI,Ye YANG,Huai-zhi ZHANG,He LIU. Effect of freeze-thaw cycle on performance of unsaturated emulsified asphalt cold recycled mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2352-2359.
[15] Wu-ping RAN,Hui-min CHEN,Ling LI,Li-qun FENG. Evolution law and model estimation and modification of resilience modulus of coarse grained soil subgrade under wet and dry cycle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2079-2086.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!