Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2193-2200.doi: 10.13229/j.cnki.jdxbgxb.20211130

Previous Articles    

Electric vehicle charging load forecasting method based on user portrait

Xue-jin HUANG1,2(),Jin-xing ZHONG1,Jing-yu LU2,Ji ZHAO3,Wei XIAO3,Xin-mei YUAN2()   

  1. 1.Dongguan Power Supply Bureau,Guangdong Power Grid Corporation,Dongguan 523000,China
    2.College of Automotive Engineering,Jilin University,Changchun 130022,China
    3.Sichuan Energy Internet Research Institute,Tsinghua University,Chengdu 610042,China
  • Received:2021-10-29 Online:2023-08-01 Published:2023-08-21
  • Contact: Xin-mei YUAN E-mail:598066581@qq.com;yuan@jlu.edu.cn

Abstract:

In order to reasonably evaluate the impact of various factors on the charging load, this paper introduced the concept of user portrait, and generated a typical user portrait that could describe the charging behavior of users through the construction and extraction of the characteristics of vehicle charging behavior data. At the same time, it is found that the shape of load curve can be adjusted by adjusting the proportion of different types of users. Through practical examples, the effects of user behavior characteristics and attribute characteristics on key grid indicators such as charging load form, peak valley time and load rate are comprehensively analyzed, so as to reasonably guide users to charge in order, provide basis for power grid planning and capacity expansion considering electric vehicle charging load.

Key words: vehicle engineering, charging load forecasting, user portrait, distribution network

CLC Number: 

  • TM92

Table 1

Data content"

字段名称数据类型字段定义
时间timestamp采样时间
BCUBattSOCfloat车辆SOC
BCUBattCrrtfloat电流值
BCUBattUfloat电压值
charge_segmentint充电片段序号

Fig.1

Charging behavior characteristic distribution"

Fig.2

Characteristic correlation coefficient matrix"

Fig.3

Average silhouette coefficient of charging start time"

Fig.4

GMM fitting effect of charging start time"

Fig.5

Model framework"

Table 2

GMM model parameter table after fitting"

特征聚类中心(均值)方差
充电开始时间μ=[2.38,10.66,15.5,20.85]σ2=[2.70,3.68,2.93,2.32
充电额定功率μ=[65,45.90,23.30,57.17]σ2=[0,25.13,119.46,16.44]
充电时间间隔μ=[0.60,2.10]σ2=[0.13,0.97]
开始-结束SOCμ=[[22.14,81.73],[78.18,98.01],[43.95,67.79],[37.36,98.13]]σ2=[[[68.89,14.76],[14.76,15.75]],[[122.99,-1.53],[-1.53,4.53]],[[349.90,236.88],[236.88,356.62]],[[195.30,3.51],[3.51,3.87]]]

Table 3

Typical user persona"

用户行为特征属性特征
用户1

充电开始时间:早

充电额定功率:快充、慢充

充电时间间隔:1天

开始-结束SOC:低SOC-80%

电池容量:30 kW·h
用户2

充电开始时间:午

充电额定功率:快充

充电时间间隔:1天

开始-结束SOC:中SOC-充满

电池容量:30 kW·h
用户3

充电开始时间:晚

充电额定功率:慢充

充电时间间隔:2天

开始-结束SOC:中SOC-80%、中SOC-充满

电池容量:45 kW·h
用户4

充电开始时间:早、午、晚、凌晨

充电额定功率:快充、慢充

充电时间间隔:半天

开始-结束SOC:低SOC-80%、低SOC-充满

电池容量:20 kW·h

Table 4

Simulation results of different user ratios"

场景用户比例用户规模/个日峰谷差ΔPV/kW日负荷率φ/%
12∶1∶1∶140006081.1436.28
21∶2∶1∶140006728.7833.23
31∶1∶2∶140007504.2629.86
40∶0∶0∶140004581.0746.10
1 贾东明. 规模化电动汽车充电对配电网的影响及有序充电研究[D]. 保定:华北电力大学电气与电子工程学院, 2015.
Jia Dong-ming. Studies on the impacts of Large-scale vehicles charging on the power distribution network and coordinated charging[D]. Baoding: College of Electrical and Electronic Engineering, North China Electric Power University, 2015.
2 张玮,张树培,罗江鹏,等.电动汽车充电桩排队服务动态优化模型[J].吉林大学学报:工学版,2022,52(5): 1045-1051.
Zhang Wei, Zhang Shu-pei, Luo Jiang-peng, et al. Dynamic optimization model of queuing service forelectric vehicle charging piles[J]. Journal of Jilin University (Engineering and Technology Edition),2022,52(5): 1045-1051.
3 和敬涵, 谢毓毓, 叶豪东, 等. 电动汽车充电模式对主动配电网的影响[J]. 电力建设, 2015,36(1):97-102.
He Jing-han, Xie Yu-yu, Ye Hao-dong, et al. Influence of electric vehicles charging modes on active network distribution[J].Electic Power Construction, 2015, 36(1): 97-102.
4 闫云娟,查伟雄,石俊刚,等.具有随机充电需求的混合动态网络平衡模型[J].吉林大学学报:工学版,2022, 52(1): 136-143.
Yan Yun-juan, Zha Wei-xiong, Shi Jun-gang, et al. Mixed network equilibrium model with stochastic charging demand[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 136-143.
5 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4): 1-10.
Hu Ze-chun, Song Yong-hua, Xu Zhi-wei, et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceeding of the CSEE, 2012, 32(4): 1-10.
6 朱慧婷, 杨雪, 陈友媛. 电动汽车充电负荷预测方法综述[J]. 电力信息与通信技术, 2016, 14(5): 44-47.
Zhu Hui-ting, Yang-xue, Chen You-yuan, et al. Overview of the charging load forecasting methods of plug-in electric vehicles[J]. Electric Power Information and Communication Technology, 2016, 14(5):44-47.
7 张谦, 王众, 谭维玉, 等. 基于MDP随机路径模拟的电动汽车充电负荷时空分布预测[J]. 电力系统自动化, 2018, 42(20): 59-66.
Zhang Qian, Wang Zhong, Tan Wei-yu, et al. Spatial-temporal distribution prediction of charging lord for electric vehicle based on MDP random path simulation[J]. Automation of Electric Power Systems, 2018, 42(20): 59-66.
8 Wang D, Guan X, Wu J, et al. Analysis of multi-location PEV charging behaviors based on trip chain generation[C]∥IEEE International Conference on Automation Science and Engineering, New Taipei, China, 2014: 14692218.
9 陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225.
Chen Li-dan, Nie Yong-quan, Zhong Qing, et al. A model for electric vehicle charging load forecasting based on trip chains[J].Transactions of China Electrotechnical Society, 2015, 30(4): 216-225.
10 Bae S, Kwasinski A. Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid, 2012,3(1): 394-403.
11 余孟杰. 产品研发中用户画像的数据模建——从具象到抽象[J]. 设计艺术研究, 2014,4(6):60-64.
Yu Meng-jie. Data modeling of user portrayal in the product development: from concrete to abstract[J]. Design Research, 2014, 4(6): 60-64.
12 计智伟, 胡珉, 尹建新. 特征选择算法综述[J]. 电子设计工程, 2011(9): 52-57.
Ji Zhi-wei, Hu Min, Yin Jian-xin. A survey of feature selection algorithm[J]. Electronic Design Engineering, 2011(9): 52-57.
13 张剑峰. 基于分布式发电的配电网规划问题的分析[J]. 低碳世界, 2019, 9(11): 106-107.
Zhang Jian-feng. Analysis of distribution network planning based on distributed generation[J]. Low Carbon World, 2019, 9(11): 106-107.
[1] Ping-yi LIU,Xiao-ting LI,Ruo-lin GAO,Hai-tao LI,Wen-jun WEI,Ya WANG. Design and experiment of tilt-driving mechanism for the vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2185-2192.
[2] Xin CHEN,Guan-chen ZHANG,Kang-ming ZHAO,Jia-ning WANG,Li-fei YANG,De-rong SITU. Influence of lap welds on the lightweight design of welded aluminum structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1282-1288.
[3] Yong ZHANG,Feng-zhao MAO,Shui-chang LIU,Qing-yu WANG,Shen-gong PAN,Guang-sheng ZENG. Optimization on distortion grid of vehicle external flow field based on Laplacian Algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1289-1296.
[4] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[5] Lei CHEN,Yang WANG,Zhi-sheng DONG,Ya-qi SONG. A vehicle agility control strategy based on steering intent [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1257-1263.
[6] Yan-li YIN,Xue-jiang HUANG,Xiao-liang PAN,Li-tuan WANG,Sen ZHAN,Xin-xin ZHANG. Hierarchical control of hybrid electric vehicle platooning based on PID and Q⁃Learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1481-1489.
[7] Gui-shen YU,Xin CHEN,Zi-tao WU,Yi-xiong CHEN,Guan-chen ZHANG. Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061⁃T6 aluminum thin plate [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1338-1344.
[8] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
[9] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[10] Rui ZHAO,Yun LI,Hong-yu HU,Zhen-hai GAO. Vehicle collision warning method at intersection based on V2I communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1019-1029.
[11] Xiao-bo CHEN,Ling CHEN. Variational Bayesian cooperative target tracking with unknown localization noise statistics [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1030-1039.
[12] Yan-tao TIAN,Yan-shi JI,Huan CHANG,Bo XIE. Deep reinforcement learning augmented decision⁃making model for intelligent driving vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 682-692.
[13] Jian ZHANG,Jin-bo LIU,Yuan GAO,Meng-ke LIU,Zhen-hai GAO,Bin YANG. Localization algorithm of vehicular sensor based on multi⁃mode interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 772-780.
[14] Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662.
[15] Yan-ran LIU,Qing-yu MENG,Hong-yan GUO,Jia-lin LI. Vehicle trajectory prediction combined with high definition map in graph attention mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 792-801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!