Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2676-2685.doi: 10.13229/j.cnki.jdxbgxb.20211295

Previous Articles     Next Articles

Distributed adaptive vibration suppression control method of large solar panels for satellites based on Lyapunov theory

Liu ZHANG(),Qing-ming ZENG,Huan-yu ZHAO(),Guo-wei FAN   

  1. College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China
  • Received:2021-11-29 Online:2023-09-01 Published:2023-10-09
  • Contact: Huan-yu ZHAO E-mail:zhangliu@jlu.edu.cn;zhaohyjlu@jlu.edu.cn

Abstract:

A distributed adaptive vibration suppression control method was investigated to effectively suppress the on-orbit vibration of large flexible satellite panels. Considering the influence of actuator and sensor installation position on the control effect, a complete distributed adaptive controller was designed based on Lyapunov theory by analyzing the coupling effect of vibration and output force between adjacent sub-modules. The simulation results show that the vibration suppression time of the proposed distributed control method is reduced by 40% compared with the distributed control method based on LQR control method and 50% compared with the centralized control method under the condition of continuous external interference. Furthermore, the proposed control method has an improved on-orbit vibration suppression effect and is of great significance for the stable operation of the satellite.

Key words: distributed control, adaptive control, large flexible spacecraft, Lyapunov theory, vibration suppression

CLC Number: 

  • V448.22

Fig.1

Diagram of a satellite's one-sided solar panel"

Fig.2

Schematic diagram of satellite solar panel vibration"

Fig.3

Coupling effects between submodules"

Fig.4

Control scheme diagram"

Table 1

Type of references"

参数数值参数数值
帆板长/m10弹性模量/GPa70.3
帆板宽/m3泊松比0.3
帆板厚/m0.05密度/(kg·m-32700

Table 2

Actuator sensor installation position coordinates"

序号横坐标纵坐标
16.00-0.41
29.020.90
34.31-0.35
40.161.06
56.000.41
69.02-0.90
74.310.35
80.16-1.06

Fig.5

Schematic of actuator sensor optimized position"

Fig.6

Schematic of distributed control"

Fig.7

First three-order mode shapes of the solar panel"

Fig.8

Modal coordinates of distributed controlled submodule 1 and 5"

Fig.9

Control force of distributed controlled submodule 1 and 5"

Fig.10

Comparison of the two control methods under continuous external interference"

Table 3

Vibration suppression time of solar panel"

控制方法振幅抑制达97%的时间/s
子模块 1子模块5平均时间
分布式控制0.89280.80600.7812
基于LQR分布式控制2.24121.34621.3461
集中式控制2.65321.83351.8334

Fig.11

Modal coordinates of distributed controlled submodule 1 and 5"

Fig.12

Control force of distributed controlled submodule 1 and 5"

Fig.13

Comparison of the two control methods with single pulsed interference"

Table 4

Vibration suppression time of solar panel"

控制方法振幅抑制达97%的时间/s
子模块 1子模块5
分布式控制5.61245.2276
基于LQR分布式控制5.84485.8532
集中式控制5.98765.9840
1 Nadafi R, Kabganian M, Kamali A, et al. Super-twisting sliding mode control design based on Lyapunov criteria for attitude tracking control and vibration suppression of a flexible spacecraft[J]. Measurement and Control, 2019, 52(7/8): 814-831.
2 Liu Feng, Yue Bao-zeng, Zhao Liang-yu. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels[J]. Acta Astronautica, 2018, 143: 327-336.
3 Yuan Q, Liu Y, Qi N. Active vibration suppression for maneuvering spacecraft with high flexible appendages[J]. Acta Astronautica, 2017, 139: 512-520.
4 Luo Y J, Xu M L, Yan B, et al. PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator[J]. Journal of Sound & Vibration, 2015, 339: 11-24.
5 Wang Z, Xu M, Jia Y, et al. Vibration suppression-based attitude control for flexible spacecraft[J]. Aerospace Science & Technology, 2017, 70: 487-496.
6 Rahman N U, Alam M N, Ansari J A. An experimental study on dynamic analysis and active vibration control of smart laminated plates[J]. Materials Today: Proceedings, 2021, 46: 9550-9554.
7 Tian J, Guo Q, Shi G. Laminated piezoelectric beam element for dynamic analysis of piezolaminated smart beams and GA-based LQR active vibration control[J]. Composite Structures, 2020, 252: No.112480.
8 Hu Q, Ma G, Li C. Active vibration control of a flexible plate structure using LMI-based H output feedback control law[C]∥Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 2004: No.8369247.
9 苗双全, 丛炳龙, 刘向东. 基于输入成形的挠性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8): 1906-1914.
Miao Shuang-quan, Cong Bing-long, Liu Xiang-dong. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(8): 1906-1914.
10 Wang E, Wu S, Liu Y, et al. Distributed vibration control of a large solar power satellite[J]. Astrodynamics, 2019, 3(2): 189-203.
11 Ji N, Liu J. Distributed vibration control for flexible spacecraft with distributed disturbance and actuator fault[J]. Journal of Sound and Vibration, 2020, 475: No.5274.
12 Li Q, Yang H, Zhao D, et al. Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2014-2023.
13 Nakka Y, Chung S J, Allison J, et al. Nonlinear attitude control of a spacecraft with distributed actuation of solar arrays[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(3): 458-475.
14 Chen T, Shan J, Wen H. Distributed passivity-based control for multiple flexible spacecraft with attitude-only measurements[J]. Aerospace Science and Technology, 2019, 94: No.105408.
15 韩泽强. 大挠性卫星高精度控制关键技术研究[D]. 哈尔滨:哈尔滨工业大学航天学院,2020.
Han Ze-qiang. Research on key technologies of high-precision satellite high-precision control[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2020.
16 Muhammad A K, Wang X G, Cui N G, et al. A criterion for optimal sensor placement for minimizing spillover effects on optimal controllers[J]. Journal of Vibration and Control, 2018, 24(8): 1469-1487.
17 刘潇翔, 石恒, 王思野. 挠性空间结构的密集模态特性及影响分析[J].空间控制技术与应用,2017,43(01):11-16.
Liu Xiao-xiang, Shi Heng, Wang Si-ye. An analysis on characteristics and impacts of close modes in flexible space structures[J]. Aerospace Control and Application, 2017, 43(1): 11-16.
18 Åström K J, Murray R M. Feedback Systems: An Introduction for Scientists and Engineers[M]. Princeton: Princeton University Press, 2010.
19 He W, Ge S Z S. Dynamic modeling and vibration control of a flexible satellite[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(2): 1422-1431.
20 陆栋宁, 刘一武. 带旋转挠性太阳帆板卫星自适应控制[J]. 航天控制, 2014, 32(1): 49-54.
Lu Dong-ning, Liu Yi-wu. Adaptive control of the spacecraft with a rotating flexible solar array[J]. Aerospace Control, 2014, 32(1): 49-54.
[1] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
[2] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[3] Chong ZHANG,Yun-feng HU,Xun GONG,Yao SUN. Design of model⁃free adaptive sliding mode controller for cathode flow of fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2085-2095.
[4] Ming LIU,Xue-wen RONG,Yi-bin LI,Shuai-shuai ZHANG,Yan-fang YIN,Jiu-hong RUAN. Speed adaptive control of mobile robot based on terrain clustering analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1496-1505.
[5] Ting ZHOU,Yu-gong XU,Bin WU. Adaptive fractional PIλDμ sliding mode control method for speed control of spherical robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 728-737.
[6] Yan MA,Jian-fei HUANG,Hai-yan ZHAO. Method of vehicle formation control based on vehicle to vehicle communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 711-718.
[7] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[8] LI Zhi-hui, XIA Ying-ji, QU Zhao-wei, REN Jing-chen. Data-driven background model in video surveillance [J]. 吉林大学学报(工学版), 2017, 47(4): 1286-1294.
[9] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[10] LI Bing-qiang, CHEN Xiao-lei, LIN Hui, LYU Shuai-shuai, MA Dong-qi. High precision adaptive backstepping sliding mode control for electromechanical servo system [J]. 吉林大学学报(工学版), 2016, 46(6): 2003-2009.
[11] CAO Fu-cheng, XING Xiao-xue, LI Yuan-chun, ZHAO Xi-lu. Adaptive trajectory sliding mode impedance control for lower limb rehabilitation robot [J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
[12] HUANG Jing-ying, QIN Da-tong, LIU Yong-gang. Adaptive filter based antilock braking control of electro-hydraulic system for electric vehicle [J]. 吉林大学学报(工学版), 2016, 46(4): 1044-1051.
[13] WU Ai-guo, YANG Shuo, ZHANG Han, LI Chang-bin. Leveling and tracking control of multi-cylinder forging hydraulic press [J]. 吉林大学学报(工学版), 2014, 44(4): 1051-1056.
[14] HU Li-kun,MA Wen-guang,ZHAO Peng-fei,LU Zi-guang. Non-singular fast terminal sliding mode control method for 6-DOF manipulator [J]. 吉林大学学报(工学版), 2014, 44(3): 735-741.
[15] HOU Shou-wu, JIAO Ying-hou, CHEN Zhao-bo, LI Ming-zhang. Vibration compression of quadrate steel beams using mechanical mobility method [J]. 吉林大学学报(工学版), 2013, 43(05): 1295-1301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .