Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (3): 663-673.doi: 10.13229/j.cnki.jdxbgxb.20221525

Previous Articles    

Thermal conductivity and electrical insulation properties of fluorographene/polyimide composite films

Chao YANG1(),Qing-yun YAO2,Shuang-mei TANG2,Qi-long CHEN3,Feng QIN3   

  1. 1.Research Center for Inorganic Nanopowder and Application Engineering,Guilin University of Technology,Guilin 541004,China
    2.Chief Engineer's Office,Guangxi Road Construction Engineering Group Co. ,Ltd. ,Nanning 530001,China
    3.College of Road and Bridge Engineering,Guangxi Institute of Communications Technology,Nanning 530023,China
  • Received:2022-11-29 Online:2024-03-01 Published:2024-04-18

Abstract:

In order to improve the thermal conductivity and electrical insulation properties of polyimide matrix composites, fluorographene nanosheets were prepared by ultrasonic exfoliation process, and fluorographene/polyimide composite films with horizontal directional thermal conductivity characteristics were prepared by hot-pressing induced orientation process. The results show that increasing the amount of fluorinated graphene can improve the in-plane thermal conductivity of the composite film. When the mass fraction of fluorinated graphene is 30%, the in-plane thermal conductivity of the composite film is 2.4 W/(m·K). When the amount of fluorinated graphene increases, the DC withstand voltage performance of the composite film slightly decreases, but the electrical tracking resistance of the composite film increases due to the improved phonon transfer efficiency in the composite film. The above research results can provide reference for the preparation of composite films with high thermal conductivity and high electrical insulation performance.

Key words: composite material, fluorinated graphene, polyimide, thermal conductivity characteristics, electrical insulation performance

CLC Number: 

  • TB383

Fig.1

Schematic diagram of synthesis of F-graphene/PI composite film"

Fig.2

Experimental flatform of the tracking failure and DC flashover voltage"

Fig.3

TEM morphology of F-graphene nano-sheets"

Fig.4

Raman of graphite fluoride and F-graphene nano-sheets"

Fig.5

XPS spectrum of graphite fluoride and F-graphene nano-sheets"

Fig.6

XRD of F-graphene nano-sheets"

Fig.7

TGA curve of F-graphene nano-sheets"

Fig.8

SEM morphology of F-graphene/PI composite films"

Fig.9

Thermal conductivities of F-graphene/PI composite films"

Fig.10

TGA curves of F-graphene/PI composite films"

Fig.11

Conductivities of F-graphene/PI composite films"

Fig.12

Effects of F-graphene contents on DC flashover voltages of composite films"

Fig.13

Effects of F-graphene contents on traces of insulation failure of composite films"

Fig.14

Stress-strain curves of insulation failure of composite films"

Fig.15

Water contact angles of insulation failure of composite films"

Fig.16

Thermal conduction paths of F-graphene/PI composite films"

Fig.17

Platform and test results of surface potential decay characteristics of composite films with different F-graphene contents"

Table 1

Effects of F-graphene contents on surface trap characteristics of composite films"

试样浅陷阱能级/eV

浅陷阱密度/

(1036 m-3

深陷阱能级/eV

深陷阱密度/

(1036 m-3

F-graphene/PI-100.81639.950.85936.02
F-graphene/PI-150.804311.800.85825.51
F-graphene/PI-200.793511.570.84205.21
F-graphene/PI-300.759911.610.83034.92
1 Castellan S, Menis R, Tessarolo A, et al. A review of power electronics equipment for all-electric ship MVDC power systems[J]. International Journal of Electrical Power and Energy Systems, 2018, 96: 306-323.
2 解志诚,黄英,王志强,等. 2.45 GHz柔性微带天线的设计及传感特性[J]. 吉林大学学报: 理学版, 2019, 57(1): 160-165.
Xie Zhi-cheng, Huang Ying, Wang Zhi-qiang, et al. Design and sensing characteristics of flexible micostrip antenna for 2.45 GHz[J]. Journal of Jilin University (Science Edition), 2019, 57(1): 160-165.
3 杨传超, 徐鸿杰, 田国峰, 等. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 184-188.
Yang Chuan-chao, Xu Hong-jie, Tian Guo-feng, et al. Research on space environment adaptability of polyimide fiber with high-strength and high-modulus and analysis of its application prospects in aerospace field[J]. Materials Reports, 2022, 36(22): 184-188.
4 Zhou S G, Li W T, Zhao W J, et al. Tribological behaviors of polyimide composite films enhanced with fluorographene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: No. 123707.
5 Li W T, Zhao W J, Mao L S, et al. Investigating the fluorination degree of FG nanosheets on the tribological properties of FG/PI composite coatings[J]. Progress in Organic Coatings, 2020, 139: No. 105481.
6 孙承月, 郭鑫鑫, 吴忧, 等. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 161-168.
Sun Cheng-yue, Guo Xin-xin, Wu You, et al. Electron /vacuum ultraviolet irradiation effect and mechanism analysis of polyimide aerogel materials[J]. Materials Reports, 2022, 36(22): 161-168.
7 查俊伟,王帆. 高导热聚酰亚胺电介质薄膜研究进展[J]. 物理学报, 2022, 71(23): 190-207.
Zha Jun-wei, Wang Fan. Progress of high thermal conductivity polyimide dielectric films[J]. Acta Physica Sinica, 2022, 71(23): 190-207.
8 Wang N, Samani M K, Li H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering[J]. Small, 2018, 14: No. 1801346.
9 Lu R G, Su C, Huang T, et al. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2699-2708.
10 翟庆洪. 氮化硼纳米片/聚酰亚胺复合泡沫的制备与性能研究[D]. 天津: 河北工业大学材料科学与工程学院, 2022.
Zhai Qing-hong. Preparation and properties of boron nitride nanosheets/polymide composite foams[D]. Tianjin: School of Materials Science and Engineering, Hebei University of Technology, 2022.
11 汪日圆, 陈浩然, 陈芳琳, 等. 多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能[J]. 复合材料学报, 2023, 40(3): 1494-1500.
Wang Ri-yuan, Chen Hao-ran, Chen Fang-lin, et al. Preparation and performance of ddopamine@boron nitridecarbon nanotubes/polyimide composite aerogel solar-driven[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1494-1500.
12 曲可新. 低介电高导热聚酰亚胺复合纤维膜的结构设计及性能研究[D]. 哈尔滨: 哈尔滨理工大学材料科学与化学工程学院, 2022.
Qu Ke-xin. Research on the structure design and performance of polyimide composite fiber membrane with low dielectric and high thermal conductivity[D]. Harbin: School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, 2022.
13 王兵, 吉海峰, 刘迎春, 等. 功能化氮化硼纳米片的制备及在导热聚氨酯复合材料中的应用[J]. 高分子材料科学与工程, 2022, 38(9): 66-71.
Wang Bing, Ji Hai-feng, Liu Ying-chun, et al. Preparation of functionalized boron nitride nanosheets and their application in thermally conductive composites on the matrix of polyurethane[J]. Polymer Materials Science and Engineering, 2022, 38(9): 66-71.
14 Huang W X, Pei Q X, Liu Z S, et al. Thermal conductivity of fluorinated graphene: a non-equilibrium molecular dynamics study[J]. Chemical Physics Letters, 2012, 552: 97-101.
15 晏年平, 贾志东, 邹晓兵. 加成型液体硅橡胶耐电痕化及蚀损性能提升方法研究[J]. 中国电机工程学报,2018,38(16): 4960-4968, 5000.
Yan Nian-ping, Jia Zhi-dong, Zou Xiao-bing. Improving the tracking and erosion resistance performance of addition-cure liquid silicone rubber[J]. Proceedings of the CSEE, 2018, 38(16): 4960-4968, 5000.
16 Gong P W, Wang Z F, Wang J Q, et al. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage[J]. Journal of Materials Chemistry, 2012, 22(33): 16950-16956.
17 Sun C B, Feng Y Y, Li Y, et al. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries[J]. Nanoscale, 2014, 6(5): 2634-2641.
18 袁端磊, 闵道敏, 黄印, 等. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响[J]. 物理学报, 2017, 66(9): 329-336.
Yuan Duan-lei, Min Dao-min, Huang Yin, et al. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites[J]. Acta Physica Sinica, 2017, 66(9): 329-336.
19 吴运香, 雷霆, 高纪明, 等. 氮化硅晶须/氮化铝颗粒/聚酰亚胺复合材料的制备及性能[J]. 粉末冶金材料科学与工程, 2021, 26(3): 250-256.
Wu Yun-xiang, Lei Ting, Gao Ji-ming, et al. Preparation and properties of AlN/Si3N4/PI composites[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 250-256.
20 Zhang L B, Wang J Q, Wang H G, et al. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1537-1545.
21 Zhang T, Sun J, Ren L, et al. Nacre-inspired polymer composites with high thermal conductivity and enhanced mechanical strength[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 92-99.
22 黄欣, 周远翔, 张灵, 等. 交直流复合电压下热老化油纸绝缘空间电荷特性[J]. 高电压技术,2022, 48(12): 4800-4808.
Huang Xin, Zhou Yuan-xiang, Zhang Ling, et al. Space charge characteristics of thermal aging oil paper insulation under AC/DC composite voltage[J]. High Voltage Engineering, 2022, 48(12): 4800-4808.
23 鹿海军, 刘晓丽, 李学山, 等. 石英纤维增强聚酰亚胺透波复合材料的高温热氧老化性能[J]. 航空材料学报, 2022,42(5): 127-134.
Lu Hai-jun, Liu Xiao-li, Li Xue-shan, et al. High-temperature thermal oxidative aging properties of quartz fiber reinforced polyimide composites[J]. Journal of Aeronautical Materials, 2022, 42(5): 127-134.
24 丁军, 索双富, 史纪军, 等. 微小航天推进器聚酰亚胺老化性能预测及形貌测试[J]. 工程塑料应用, 2022, 50(7): 117-121.
Ding Jun, Suo Shuang-fu, Shi Ji-jun, et al. Aging performance prediction and microstructure of polyimide for micro spacecraft propulsion[J]. Engineering Plastics Application, 2022, 50(7): 117-121.
[1] Liang XU,Jing-hou XIAO,Wan-wan SONG,Song ZHOU. Three⁃point bending fatigue properties of carbon fiber composite laminates [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 400-409.
[2] Zhi ZHENG,Pei YUAN,Xuan-hui JIN,Si-si WEI,Bo GENG. Experimental on composite flexible anti⁃collision fender of bridge pier [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2581-2590.
[3] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[4] Zhi ZHENG,Bo GENG,Fu-min WANG,Jun-hong DONG,Si-si WEI. Improvement of protective ability for existing low⁃grade concrete guardrail [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1362-1374.
[5] Wei LI,Hai-sheng SONG,Hao-yu LU,Wen-ku SHI,Qiang WANG,Xiao-jun WANG. Linear identification method of hysteresis characteristic of composite leaf springs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 829-836.
[6] Yu-xuan WEI,Ming ZHANG,Jia LIU,Shuo LIU,Ming-yu LU,Hong-yu WANG. Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 91-100.
[7] Jin TONG,Zi-bo GAO,Chao HUO,Zi-yang WANG,Yun-hai MA,Zhi-yong CHANG. Effect of Cu nanoparticles on friction and wear of ultra⁃high molecular weight polyethylene with composites at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 493-500.
[8] Fan YANG,Xu-dong ZHANG,Meng ZHAO,Bo SHE,Jun-kai DENG. Deformation behavior of shape memory alloy-metallic glass matrix composites based on finite element calculations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 172-180.
[9] Yi LI,Dong-di HUANG,Kai-feng YU,Ji-cai LIANG,Xiao-ling HE,Xi-tong REN. Performance of silica carbon black modified basalt fiber reinforced polyamide 6 composite [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 181-187.
[10] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[11] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[12] YANG Yue, LI Xue, XU Xiao-dan. Microstructure and properties of sintered Ti-B-C-N power [J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[13] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[14] PENG Ai-dong, LIU He-nan. Preparation and fluorescent properties of cubic perylene nanoparticles based on oil-in-water microemulsion method [J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[15] LIU Li-ping, LIU Yong-bing, JI Lian-feng, CAO Zhan-yi, YANG Xiao-hong. Flow stress behavior of in situ particulate reinforced titanium atrix composite at elevated temperature [J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!