Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (8): 2295-2300.doi: 10.13229/j.cnki.jdxbgxb.20230224

Previous Articles     Next Articles

Link anomaly detection algorithm for wireless sensor networks based on convolutional neural networks

Chao-lu TEMUR(),Ya-ping ZHANG   

  1. College of Arts and Sciences,Shanghai Maritime University,Shanghai 201306,China
  • Received:2023-03-14 Online:2024-08-01 Published:2024-08-30

Abstract:

To accurately detect abnormal links in wireless sensor networks, a CNN based wireless sensor network link anomaly detection algorithm is proposed. Design network link anomaly detection function using concurrent multithreading technology, and establish a training model for network link anomaly detection using CNN. Input network link data, convolve network link information, extract network link feature vectors, and analyze network link abnormal behavior through down sampling function processing. Use vector mapping to represent the abnormal part vector, and complete classification detection through Softmax function classifier. The experimental results show that the proposed method can effectively improve the accuracy of link anomaly classification and detection, and it takes a short time.

Key words: wireless sensor network, convolution neural network, convolution operation, activation function, lower sampling layer, link characteristics

CLC Number: 

  • TP391

Fig.1

Link anomaly detection flow chart"

Fig. 2

Link feature processing of output layer"

Fig. 3

Performance comparison of three algorithms"

Fig. 4

Analysis of link anomaly detection time consumption of each algorithm"

1 杨亚让, 吴云虎. 基于随机森林的无线传感器通信网络阻塞故障检测[J]. 吉林大学学报:工学版, 2023, 53(5): 1490-1495.
Yang Ya-rang, Wu Yun-hu. Blockage fault detection of wireless sensor communication network based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(5):1490-1495.
2 刘拥民, 杨钰津, 罗皓懿, 等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[J]. 计算机应用, 2023, 43(1):160-168.
Liu Yong-min, Yang Yu-jin, Luo Hao-yi, et al. Wireless sensor network intrusion detection method based on two-way cyclic generation countermeasures network[J]. Computer Application, 2023,43 (1): 160-168.
3 刘敏. 基于深度学习的光纤网络链路缺陷数据检测及研究[J]. 激光杂志, 2021, 42(8):108-114.
Liu Min. Data detection and research of optical network link defects based on deep learning[J]. Laser Journal, 2021,42(8): 108-114.
4 郁滨, 熊俊. 基于平衡迭代规约层次聚类的无线传感器网络流量异常检测方案[J]. 电子与信息学报, 2022, 44(1): 305-313.
Yu Bin, Xiong Jun. A novel wsn traffic anomaly detection scheme based on BIRCH[J]. Journal of Electronics & Information Technology, 2022, 44(1): 305-313.
5 Kumar Gupta S, Kumar S, Tyagi S. Energy efficient and effective node deployment for wireless sensor network[J]. International Journal of Communication Systems, 2022, 35(9): 21535139.
6 Envelope A J. Dynamic coordinator management for balancing data flow in the wireless sensor network[J]. IFAC-PapersOnLine, 2022, 55(4): 115-120.
7 杨彩云, 汪小东, 汪晨, 等. 基于移动Sink的带状无线传感器网络数据汇聚方法研究[J]. 传感技术学报, 2022, 35(4): 550-557.
Yang Cai-yun, Wang Xiao-dong, Wang Chen, et al. Research on data aggregation method of banded wsn based on mobile sink[J]. Chinese Journal of Sensors and Actuators, 2022,35(4): 550-557.
8 张书毓, 施伟斌, 王文龙, 等. 基于线性回归的无线传感器网络链路质量估计方法研究[J]. 计算机应用研究, 2022, 39(7): 2132-2136, 2155.
Zhang Shu-yu, Shi Wei-bin, Wang Wen-long, et al. Research on link quality estimation method for wireless sensor networkbased on linear regression[J]. Application Research of Computers, 2022,39(7): 2132-2136, 2155.
9 高文志, 王彦军, 王欣伟, 等. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报:工学版, 2022, 52(2):417-424.
Gao Wen-zhi, Wang Yan-jun, Wang Xin-wei, et al. Real-time diagnosis for misfire fault of diesel engine based on convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 417-424.
10 李红艳, 李春庚, 安居白, 等. 注意力机制改进卷积神经网络的遥感图像目标检测[J]. 中国图象图形学报, 2019, 24(8): 1400-1408.
Li Hong-yan, Li Chun-geng, An Ju-bai, et al. Attention mechanism improves CNN remote sensing image object detection[J]. Journal of Image and Graphics, 2019, 24(8): 1400-1408.
11 Gan J H, Teh P C. Detection of plant diseases using deep learning based on convolution neural network (CNN)[J]. I-Manager's Journal on Image Processing, 2021, 8(4): 1-8.
12 Bai S, Bao F, Zhao F. On the efficiency of a cfd-based full convolution neural network for the postprocessing of field data[J]. Fluid Dynamics & Materials Processing, 2021, 17(1): 39-47.
13 张志超, 王剑, 章隆兵, 等. 面向目标检测的卷积神经网络优化方法[J]. 高技术通讯, 2022, 32(3):227-238.
Zhang Zhi-chao, Wang Jian, Zhang Long-bing, et al. Convolutional neural network optimization method for object detection[J]. Chinese High Technology Letters, 2022, 32(3): 227-238.
14 Sinha R, Sur R, Sharma R, et al. Anomaly detection using system logs: a deep learning approach[J]. International Journal of Information Security and Privacy (IJISP), 2022, 16(1): 1-15.
15 王慧珍, 王立德, 杨岳毅, 等. 基于Logistic集成学习的列车MVB网络异常检测方法研究[J]. 机车电传动, 2021(1):138-144.
Wang Hui-zhen, Wang Li-de, Yang Yue-yi, et al. Anomaly detection for MVB network based on logistic ensemble learning [J]. Electric Drive for Locomotives, 2021 (1): 138-144.
16 Safaei M, Driss M, Boulila W, et al. Global outliers detection in wireless sensor networks: a novel approach integrating time‐series analysis, entropy, and random forest‐based classification[J]. Software: Practice and Experience, 2022, 52(1): 277-295.
17 Alzubi O A. A deep learning-based frechet and dirichlet model for intrusion detection in IWSN[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(2): 873-883.
18 阮峻, 孙豪, 朱志俊, 等. 直流控保系统光纤链路微弱故障的定位[J]. 中国激光, 2021, 48(20): 113-119.
Ruan Jun, Sun Hao, Zhu Zhi-jun, et al. Location of weak faults in optical fiber links of direct current control and protection system[J]. Chinese Journal of Lasers, 2021, 48(20): 113-119.
19 Liu C, Su X, Li C. Edge computing for data anomaly detection of multi-sensors in underground mining[J]. Electronics, 2021, 10(3): 302-311.
20 张帆, 黄赟, 方子茁, 等. 卷积神经网络的损失最小训练后参数量化方法[J]. 通信学报, 2022, 43(4):114-122.
Zhang Fan, Huang Yun, Fang Zi-zhuo, et al. Lost-minimum post-training parameter quantization method for convolutional neural network[J]. Journal on Communications, 2022, 43(4): 114-122.
[1] Jin-zhou ZHANG,Shi-qing JI,Chuang TAN. Fusion algorithm of convolution neural network and bilateral filtering for seam extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2313-2318.
[2] Hong-wei ZHAO,Hong WU,Ke MA,Hai LI. Image classification framework based on knowledge distillation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2307-2312.
[3] Xiao-ying Wang,Xiao-hai Chen. Random backoff algorithm for multi link transmission in embedded wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2057-2062.
[4] Yun-zuo ZHANG,Wei GUO,Wen-bo LI. Omnidirectional accurate detection algorithm for dense small objects in remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1105-1113.
[5] Jin DUAN,An-ni YAO,Zhen WANG,Lin-tao YU. Improved sparrow search algorithm optimizes coverage in wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 761-770.
[6] Zhong-xing DUAN,Rui-xing LIU,Chong LIU. 3DDV⁃Hop node localization optimized based on multi⁃strategy improved sparrow search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 771-784.
[7] Nan ZHANG,Jian-hua SHI,Ji YI,Ping WANG. Real⁃time tracking method of underground moving target based on weighted centroid positioning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1458-1464.
[8] Dong-yuan GE,Wen-jiang XIANG,Jian LI,En-chen LIU,Xi-fan YAO. Automatic positioning method of electric vehicle charging based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3465-3471.
[9] Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665.
[10] Qiang GUO,Yu-qiang CUI,Yong WANG. Nodes scheduling algorithm based on dynamic cluster in wireless sensor network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1466-1476.
[11] Yan-lei XU,Run HE,Yu-ting ZHAI,Bin ZHAO,Chen-xiao LI. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2304-2312.
[12] You ZHOU,Sen YANG,Da-lin LI,Chun-guo WU,Yan WANG,Kang-ping WANG. Acceleration platform for face detection and recognition based on field⁃programmable gate array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2051-2057.
[13] Bin-bin YU,Liang HU,Ling CHI. Digital signature scheme against internal and external attack for wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1676-1681.
[14] Ji-chang GUO,Jie WU,Chun-le GUO,Ming-hui ZHU. Image super-resolution reconstruction based on residual connection convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1726-1734.
[15] LIU Zhou-zhou, PENG Han. Topology control algorithm based on node reliability in WSN [J]. 吉林大学学报(工学版), 2018, 48(2): 571-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .