Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 36-51.doi: 10.13229/j.cnki.jdxbgxb.20230334

Previous Articles     Next Articles

Matching analysis and experimental verification of heavy-duty vehicle torsional shock absorbers

Kai-feng WANG1,2(),Xing-yu MA2,Jia-xing ZHU2,Xiang-yang XU1(),Hao-cheng FENG2,Yu-long LEI3   

  1. 1.School of Transportation Science and Engineering,Beihang University,Beijing 100191,China
    2.Automotive Transmission Engineering Research Institute,Shaanxi Fast Gear Co. ,Ltd. ,Xi'an 710119,China
    3.College of Automotive Engineering,Jilin University,Changchun 130022,China
  • Received:2023-04-10 Online:2025-01-01 Published:2025-03-28
  • Contact: Xiang-yang XU E-mail:wangkaifeng@fastgroup.com;xxy@buaa.edu.cn

Abstract:

In order to study the matching application characteristics of the shock absorber integrated in the AT (Automatic transmission) on the large-tonnage intelligent transportation equipment,the parameters of no-load,half-load and full-load heavy-duty vehicles and the adaptive engine were taken as the input, a complete vehicle transmission system model was established based on AMESim simulation platform. The influence of different damper torsional characteristic parameters at different transmission gears on the matching characteristics of the vehicle transmission system was analyzed in the fixed throttle opening and the accuracy of the simulation model was verified through a torsional vibration experimental platform.The results show that the vehicle weight has a significant impact on the matching characteristics of the shock absorber and the whole vehicle,and the equivalent stiffness safety region value of the shock absorber corresponding to different vehicle weights is different; The effect of the shock absorber at different gears is significantly different. When the shock absorber is at high gear,it is easier to amplify the resonance amplitude of the input speed; The second level torsional stiffness shock absorber can improve the speed fluctuation at the input end of the transmission in harsh working conditions,the first level torsional stiffness has a greater beneficial impact on torsional vibration compared to the second level torsional stiffness,the minimum damping moment was determined by analyzing the torsional vibration results under different damping moments.

Key words: torsional vibration damper, equivalent stiffness, torsional characteristic, resonance, torsional vibration matching

CLC Number: 

  • U463.2

Fig.1

AT installation environment diagram of shock absorber"

Fig.2

AT breakdown structure diagram of shock absorber"

Fig.3

Strong harmonic (left) and main harmonic (right) excitation torque phase diagram"

Fig.4

Torsional shock absorber and it's simplified model"

Fig.5

Torsional vibration model of transmission system under idle operating condition"

Fig.6

Torsional vibration model of transmission system under acceleration condition"

Fig.7

Structural diagram of vehicle transmission system"

Fig.8

AMEsim simulation model of vehicle transmission system"

Fig.9

Discrete simplified model of diesel engine crankshaft system"

Table 1

Crankshaft discretization parameters"

惯量/(kg·m2数值刚度/107(N·m·rad-1数值
I10.276K13.495
I20.059K27.447
I30.225K31.102
I40.088K41.116
I50.177K51.091
I60.089K61.093
I70.227K71.124
I80.115K81.117
I90.279K91.117
I100.089K101.124
I110.177K111.093
I120.088K121.092
I130.222K131.116
I140.059K147.447
I150.016K155.344
I164.465

Table 2

Basic information of whole vehicle and transmission"

信息及编号参数数值
整车1长×宽×高/m×m×m11.5×4.5×4.6
2迎风面高/m4.5
3迎风面宽/m4
4满载重量/t150
5轮胎半径/m0.97
6驱动形式6×4
7风阻系数0.65
8滚动阻力系数0.025
9路面附着系数0.7
10主减速比22

变速

11最大输入扭矩/(N·m)3 500
12最大输入转速/(r·min-12 500
13前进挡位数9
14离合器数6
15行星排数4

Fig.10

Single cylinder pressure curve"

Fig.11

Comparison between simulated and actual values of vehicle speeds in different gears"

Table 3

Comparison table of simulation analysis conditions"

挡位等效刚度/[N·m·(°)-1车重/t

2~9

350100(空载)
500100(空载)
650100(空载)
2~9350120(半载)
500120(半载)
650120(半载)
2~9350140(满载)
500140(满载)
650140(满载)

Fig.12

Comparison of speed filtering for various gear fluctuations"

Fig.13

Natural frequency of transmission input under different equivalent stiffness"

Table 4

Solution of critical speed with different equivalent stiffness"

等效刚度

/[N·m·(°)-1

频率

/Hz

谐次
0.511.522.533.544.55
35070.98 5204 2602 8402 1301 7041 4181 2171 065946852
50074.18 8804 4402 9602 2201 7761 4821 2681 110986888
65077.29 3604 6803 1202 3401 8721 5441 3371 1701 040936

Fig.14

Torsional vibration patterns of shock absorbers with different equivalent stiffness"

Fig.15

Torsional vibration patterns under different vehicle load conditions"

Fig.16

Ideal torsion characteristic curve of the second level with different slopes"

Fig.17

Ideal torsion characteristic curve of the first level with different slopes"

Table 5

Six different secondary linear torsional stiffness characteristic parameters"

扭转行程角/(°)扭矩/(N·m)
第1种第2种第3种第4种第5种第6种
-12-4 200-4 200-4 200-4 200-4 200-4 200
-10(第1、4种)/-9(第2、5种)/-8(第3、6种)-2 600-2 322-2 064-2 580-1800-1 000
0000000
10(第1、4种)/9(第2、5种)/8(第3、6种)2 6002 3402 0802 58018001 000
124 2004 2004 2004 2004 2004 200

Fig.18

Matching calculation results of six different secondary linear torsional stiffness shock absorbers"

Fig.19

Influence of damping torque"

Fig.20

Torsional vibration reduction test bench"

Fig.21

Comparison of torsional shock absorber test and simulation data"

1 Sachs A G Z F, Bach S H.Systematic search for and vibratory assessment of new action principles for alternative rotary vibration decoupling systems in the passenger car driveline[J].Drive System Technique, 2004(6): 3-12.
2 Taehyun K, Hanlim S, Sungho H, et al.Analysis of dual mass flywheel using discrete arcspring model[J].Key Engineering Materials,2006, 326-328:1607-1610.
3 Steinel K.Clutch tuning to optimize noise and vibration behavior in trucks andbuses[C]∥SAE Paper,2000-3292.
4 吴虎威, 吴光强. 离心摆吸振器及其在大转角扭转减振器上的应用[J].汽车工程,2017(12):1409-1416.
Wu Hu-wei, Wu Guang-qiang. Centrifugal pendulum vibration absorber and its application in large angle torsional damper[J].Automotive Engineering,2017 (12): 1409-1416.
5 Prasad J S, Damodar N C, Naidu T S.Clutch hysteresis maximization for elimination of gear rattle in a passenger bus[C]∥SAE Paper,2010-0100.
6 Tsujiuchi N, Koizumi T'hara N, et a1. The Effects Of Clutch Damper in Idling Driveline Rattle[M].Berlin:Springer Science&Business Media,2013.
7 Bhagate R, Badkas A, Mohan K.Driveline torsional analysis and parametric optimization for reducing driveline rattle[C]∥SAE Paper,2015-2176.
8 吕良远. 离合器扭振对车内噪声影响研究[D].长春:吉林大学汽车工程学院,2020.
Liang-yuan Lyu.Research on the influence of clutch torsional vibration on vehicle interior noise [D]. Changchun: College of Automotive Engineering,Jilin University,2020.
9 吴虎威, 吴光强, 陈祥, 等. 新型三级刚度扭转减振器设计开发及性能分析[J].机械工程学报,2019,55: 75-83.
Wu Hu-wei, Wu Guang-qiang, Chen Xiang,et al. Design, development, and performance analysis of a new three-level stiffness torsional vibration damper [J]. Journal of Mechanical Engineering, 2019, 55: 75-83.
10 郑钰馨, 奚鹰, 李梦如, 等.旋转向量减速器纯扭转模型固有频率和灵敏度分析[J].吉林大学学报:工学),2019,49(2): 499-512.
Zheng Yu-xin, Xi Ying, Li Meng-ru, et al. Natural frequency and sensitivity analysis of a pure torsion model of a rotating vector reducer[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 499-512.
11 袁晨恒, 邓兆祥, 姜艳军, 等. 轿车传动系扭转振动模型分析与计算[J].重庆理工大学学报,2010(7):18-22.
Yuan Chen-heng, Deng Zhao-xiang, Jiang yan-jun, et al. Analysis and calculation of torsional vibration model of car transmission system[J]. Journal of Chongqing University of Technology, 2010(7):18-22.
12 史文库, 陈龙, 张贵辉, 等.多级刚度双质量飞轮扭转特性建模与试验验证[J].吉林大学学报:工学版,2020,50(1): 44-52.
Shi Wen-ku, Chen Long, Zhang Gui-hui, et al. Modeling and experimental verification of torsional characteristics of multi-stage stiffness dual mass flywheel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(1): 44-52.
13 高普, 项昌乐, 刘辉. 基于实车传动系统动力学特性的变刚度扭转吸振器减振控制[J].兵工学报,2022,43(10): 2443-2450.
Gao Pu, Xiang Chang-le, Liu Hui. Variable stiffness torsional vibration absorber vibration reduction control based on the dynamic characteristics of real vehicle transmission systems[J]. Journal of Ordnance Engineering, 2022, 43 (10): 2443-2450.
14 康强, 吴昱东, 邓江华, 等. 扭转减振器应用于前置后驱汽车传动系统扭振研究[J].制造业自动化,2014(23): 92-94.
Kang Qiang, Wu Yu-dong, Deng Jiang-hua, et al. Research on torsional vibration of front and rear drive vehicle transmission systems using torsional dampers [J]. Manufacturing Automation, 2014(23): 92-94.
15 张准, 汪凤泉. 振动分析[M].南京:东南大学出版社, 2008.
16 何渝生, 魏克严, 洪宗林. 汽车振动学[M] .北京:人民交通出版社,2016.
17 王斌. 柴油机轴系扭转振动分析及其磁流变液扭振减振器设计[D].天津:天津大学机械工程学院,2013.
Wang Bin. Torsional vibration damper of diesel engine and its analysis [D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2013.
18 张全逾, 鲍远通, 娄宗勇. 基于AMESim的传动系统扭振研究[J].制造业自动化,2014(2):99-102.
Zhang Quan-yu, Bao Yuan-tong, Lou Zong-yong.Research on torsional vibration of transmission system based on AMESim[J].Manufacturing Automation, 2014(2):99-102.
19 朱玉田, 苏健君, 刘钊, 等. 直列6缸发动机激振力分析与仿真[J].中国工程机械学报,2018(4):327-331.
Zhu Yu-tian, Su Jian-jun, Liu Zhao,et al. Analysis and simulation of excitation force of in-line 6-cylinder engine [J]. Journal of China Construction Machinery, 2018 (4): 327-331.
20 宋大凤, 高福旺, 王诗元. 基于虚拟样机模型行星混动系统受迫振动响应分析[J].吉林大学学报:工学版,2020,50(5): 1974-1982.
Song Da-feng, Gao Fu-wang, Wang Shi-yuan. Analysis of forced vibration response of planetary hybrid system based on virtual prototype model[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1974-1982.
21 吴昱东, 李人宪, 丁渭平. 基于局域共振声子带隙的扭转减振器设计方法[J].振动与冲击,2018,37(9): 180-184.
Wu Yu-dong, Li Ren-xian, Ding Wei-ping. Design method for torsional vibration dampers based on local resonance phonon bandgap[J]. Vibration and Shock, 2018, 37(9): 180-184.
[1] Shao-hua WANG,Qi-rui ZHANG,De-hua SHI,Chun-fang YIN,Chun LI. Analysis of nonlinear vibration response characteristics of hybrid transmission system with dual-planetary gear sets [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 890-901.
[2] Xiao WU,Wen-ku SHI,Nian-cheng GUO,Yan-yan ZHAO,Zhi-yong CHEN,Xin-peng LI,Zhuo SUN,Jian LIU. Multi-objective optimization of hypoid gears based on Ease off [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 76-85.
[3] Ping-yi LIU,Xiao-ting LI,Ruo-lin GAO,Hai-tao LI,Wen-jun WEI,Ya WANG. Design and experiment of tilt-driving mechanism for the vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2185-2192.
[4] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[5] Yong LUO,Yi SUI,Fu-tao SHEN,Qiang SUN,Yun-xiao DENG,Yong-heng WEI. Start up control strategy of plug in hybrid system based on double clutch transmission [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2765-2777.
[6] Zhen ZHU,Deng-feng WANG,Xiao-dong SUN,Ling-xin ZENG,Ying-feng CAI,Long CHEN. Configuration analysis of hydro⁃mechanical composite transmission devices [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2265-2277.
[7] Chang-qing DU,Xi-liang CAO,Biao HE,Wei-qun REN. Parameters optimization of dual clutch transmission based on hybrid particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1556-1564.
[8] YU Liang, LI He-yan, MA Biao, LI Hui-zhu, LI Ming-yang. Analysis and verification for average axial pressure attenuation of multi-disc clutch [J]. 吉林大学学报(工学版), 2018, 48(4): 990-997.
[9] LIU Guo-zheng, SHI Wen-ku, Chen Zhi-yong. Finite element analysis of transmission error for hypoid gears considering installation error [J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[10] ZHAO Er-hui, MA Biao, LI He-yan, DU Qiu, WU Jian-peng, MA Cheng-nan. Effect of non-uniform contact on friction characteristics of wet clutches [J]. 吉林大学学报(工学版), 2018, 48(3): 661-669.
[11] LI Ming-yang, MA Biao, LI He-yan, DU Qiu, YU Liang, CHEN Fei. Influence of radial thermal stresses on buckling deformation of separator discs in multi-disc clutches [J]. 吉林大学学报(工学版), 2018, 48(1): 83-88.
[12] WANG Lei, LIU Zhao, LIU Yang. Shift quality evaluation based on human response spectrum analysis [J]. 吉林大学学报(工学版), 2017, 47(3): 725-730.
[13] ZONG Chang-fu, REN Ming-hui, WAN Ying, CHEN Tao, BAI Ying-bo. Optimization of macro-geometric parameters of helical gears of transmissions to reduce vibration [J]. 吉林大学学报(工学版), 2016, 46(6): 1772-1779.
[14] LEI Yu-long,LIU Ke,FU Yao,SUN Shao-hua,ZENG Hua-bing. Shift quality evaluation model based on ideal shift process [J]. 吉林大学学报(工学版), 2015, 45(2): 358-363.
[15] ZHAO Jia-xin,MA Biao,LI He-yan,ZHU Li,HAN Ming,ZHU Li-an. Thermoelastic stability of wet clutches during engaging process [J]. 吉林大学学报(工学版), 2015, 45(1): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!