Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2038-2049.doi: 10.13229/j.cnki.jdxbgxb.20230940

Previous Articles     Next Articles

Hybrid strategy improves WOA⁃BiLSTM speed prediction of expressway exit ramp

Qing-ling HE(),Yu-long PEI(),Lin HOU,Jing LIU,Sheng PAN   

  1. College of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China
  • Received:2023-09-05 Online:2025-06-01 Published:2025-07-23
  • Contact: Yu-long PEI E-mail:qinglinghe@yeah.net;peiyulong@nefu.edu.cn

Abstract:

Aiming at the problem that the existing meta-heuristic algorithm has slow convergence speed and large error in the process of optimizing the neural network to predict vehicle speed, a vehicle speed prediction method for expressway off-ramp based on IWOA-BiLSTM was proposed. Firstly, the Circle chaotic map was used to replace the randomly generated initial population in the whale optimization algorithm to increase the diversity and quality of the population.Secondly, the elite opposition-based learning strategy was used to improve the diversity of the individual 's preferred position and reduce the risk of the algorithm falling into local optimum and premature convergence.Finally, the cosine function was used to change the adaptive convergence factor and introduce the inertia weight strategy. On the premise of retaining the advantages of the whale optimization algorithm, the global search and local development capabilities of the algorithm were balanced. The simulation results show that, compared with the existing meta-heuristic algorithm and vehicle speed prediction model, the IWOA algorithm has significantly improved in terms of optimization accuracy, convergence rate and prediction accuracy.

Key words: transportation planning and management, exit ramp, speed prediction, whale optimization algorithm(WOA), hybrid strategy, bidirectional long short-term memory(BiLSTM)

CLC Number: 

  • U491

Table1

Correlation degree of influencing factors of average speed"

交通流量平均车速正常驾驶强行换道频繁换道缓速行驶近距跟驰急加减速
交通流量交通流量*********************
平均车速0.17平均车速******************
正常驾驶0.520.63正常驾驶***************
强行换道-0.49-0.56-0.78强行换道************
频繁换道0.180.300.22-0.26频繁换道********
缓速行驶-0.49-0.62-0.840.64-0.41缓速行驶***
近距跟驰-0.22-0.27-0.320.37-0.130.24近距跟驰***
急加减速-0.092-0.14-0.160.19-0.0970.0810.13急加减速

Fig.1

IWOA-BiLSTM speed prediction process"

Table 2

Benchmarking functions simulation results"

测试函数指标IWOAWOAGWOPSOGA
f1平均值2.6E-721.1E-501.0E-161.6E+013.9E+01
标准差1.4E-714.7E-506.6E-177.1E+006.7E+00
f2平均值3.0E-056.2E-014.3E+041.0E+043.8E+04
标准差9.4E-052.3E+001.8E+046.5E+038.5E+03
f3平均值2.1E-234.8E+018.2E-079.5E+006.8E+01
标准差9.1E-233.1E+019.5E-072.9E+008.6E+00
f4平均值7.4E-054.1E-017.0E-013.3E+029.5E+03
标准差1.1E-042.6E-013.4E-011.5E+025.7E+03
f5平均值-1.2E+04-1.0E+04-6.0E+03-6.8E+03-2.1E+03
标准差1.1E+031.9E+036.8E+021.1E+034.1E+02
f6平均值1.9E-150.0E+002.7E+002.0E+022.6E+02
标准差1.0E-140.0E+002.9E+002.9E+013.3E+01
f7平均值0.0E+001.5E-025.0E-034.4E+001.1E+02
标准差0.0E+004.6E-021.0E-021.4E+006.7E+01
f8平均值4.7E-032.7E-024.6E-025.8E+008.4E+00
标准差2.5E-022.7E-022.5E-022.5E+004.2E+00
f9平均值6.5E-044.3E-036.4E-031.2E-028.7E-03
标准差4.2E-041.2E-029.9E-039.2E-039.9E-03
f10平均值-3.3E+00-3.2E+00-2.6E+00-3.1E+00-1.6E+00
标准差7.0E-021.3E-017.9E-011.7E-015.0E-01
f11平均值-9.6E+00-7.5E+00-8.3E+00-8.0E+00-2.2E+00
标准差1.6E+003.1E+002.5E+002.5E+008.0E-01
f12平均值-1.0E+01-1.0E+01-8.7E+00-6.7E+00-2.4E+00
标准差9.9E-012.1E+002.9E+003.0E+009.2E-01

Fig.2

Benchmarking functions simulation results statistics"

Fig.3

Benchmark function convergence curve"

Table 3

Comparison of the average time consumption of IWOA and WOA"

函数平均耗时WOA与IWOA平均耗时的百分比/%
WOAIWOA
单峰基准测试函数1.5701.828116.43
多峰基准测试函数1.9771.90596.36
复合基准测试函数1.7011.69499.59
平均值1.7491.809103.41

Table 4

Algorithm MAE ranking"

算法MAE排名
IWOA2.13E+011
WOA1.78E+022
PSO1.40E+033
GWO4.10E+034
GA4.85E+035

Fig.4

Correlation between actual value and predicted value"

Fig.5

Error comparison analysis"

Table 5

Comparison of the prediction performance indexes of each model under different time granularity"

类别5 min15 min30 min
MAERMSEMAPE/%MAERMSEMAPE/%MAERMSEMAPE/%
IWOA-BiLSTM4.75.07.54.64.87.44.54.67.2
WOA-BiLSTM7.07.211.56.97.211.36.86.811.0
PSO-ELMAN7.77.812.57.27.311.77.17.311.6
GA-BP8.48.313.57.77.512.47.37.311.8
LSTM7.87.912.87.67.912.57.67.412.3
SVM8.99.214.68.38.913.77.98.012.9
[1] Hou L, Pei Y, He Q. A car following model in the context of heterogeneous traffic flow involving multilane following behavior[J].Physica A: Statistical Mechanics and its Applications, 2023, 632: No.129307.
[2] 朱洁玉, 马艳丽. 合流区域多车交互风险实时评估方法[J]. 吉林大学学报: 工学版, 2022, 52(7): 1574-1581.
Zhu Jie-yu, Ma Yan-li. Real-time assessment method of multi-vehicle interaction risk in confluence area[J].Journal of Jilin University (Engineering Edition), 2022, 52(7): 1574-1581.
[3] Boukerche A, Wang J. Machine learning-based traffic prediction models for intelligent transportation systems[J]. Computer Networks, 2020, 181: No. 107530.
[4] Tedjopurnomo D A, Bao Z, Zheng B, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J].IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4): 1544-1561.
[5] Lee S, Lee Y I, Cho B. Short‐term travel speed prediction models in car navigation systems[J]. Journal of Advanced Transportation, 2006, 40(2): 122-139.
[6] Zhang Z, Wang Y, Chen P, et al. Probe data-driven travel time forecasting for urban expressways by matching similar spatiotemporal traffic patterns[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 476-493.
[7] Chen P, Ding C, Lu G, et al. Short-term traffic states forecasting considering spatial-temporal impact on an urban expressway[J]. Transportation Research Record, 2016, 2594(1): 61-72.
[8] Tang K, Chen S, Cao Y, et al. Short-Term travel speed prediction for urban expressways: hybrid convolutional neural network models[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(3): 1829-1840.
[9] George S, Santra A K. An improved long short‐term memory networks with Takagi‐Sugeno fuzzy for traffic speed prediction considering abnormal traffic situation[J]. Computational Intelligence, 2020, 36(3): 964-993.
[10] Manne S, Lydia E L, Pustokhina I V, et al. An intelligent energy management and traffic predictive model for autonomous vehicle systems[J]. Soft Computing, 2021, 25(18): 11941-11951.
[11] Jia X, Zhou W, Yang H, et al. Short-term traffic travel time forecasting using ensemble approach based on long short‐term memory networks[J]. IET Intelligent Transport Systems, 2023, 17: 1262-1273.
[12] Shuai C, Wang W C, Xu G, et al. Short-term traffic flow prediction of expressway considering spatial influences[J]. Journal of Transportation Engineering, Part A: Systems, 2022, 148(6): No.04022026.
[13] Wolpert D H, Macready W G. No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82.
[14] Yuan J, Abdel-Aty M, Gong Y, et al. Real-time crash risk prediction using long short-term memory recurrent neural network[J]. Transportation research record, 2019, 2673(4): 314-326.
[15] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[16] Kaur G, Arora S. Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5(3): 275-284.
[17] Seif Z, Ahmadi M B. An opposition-based algorithm for function optimization[J]. Engineering Applications of Artificial Intelligence, 2015, 37: 293-306.
[18] 刘嫣然, 孟庆瑜, 郭洪艳, 等. 图注意力模式下融合高精地图的周车轨迹预测[J]. 吉林大学学报: 工学版, 2023, 53(3): 792-801.
Liu Yan-ran, Meng Qing-yu, Guo Hong-yan, et al. Cycle car trajectory prediction with high-precision map fusion under the attention mode of map[J].Journal of Jilin University ( Engineering and Technology Edition ), 2023, 53(3): 792-801.
[19] 张兵, 周丹丹, 孙健. 基于双向长短期记忆网络的公交到站时间预测模型[J]. 交通运输系统工程与信息, 2023, 23(2): 148-160.
Zhang Bing, Zhou Dan-dan, Sun Jian, et al. Bus arrival time prediction model based on bidirectional long short-term memory network[J]. Transportation System Engineering and Information, 2023, 23(2): 148-160.
[1] Hui-zhi XU,Dong-sheng HAO,Xiao-ting XU,Shi-sen JIANG. Expressway small object detection algorithm based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2003-2014.
[2] Xiang-hai MENG,Guo-rui WANG,Ming-yang ZHANG,Bi-jiang TIAN. Traffic accident prediction model of mountain highways based on selection integration [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1298-1306.
[3] Hao YUE,Xiao CHANG,Jian-ye LIU,Qiu-shi QU. Customized bus route optimization with vehicle window [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1266-1274.
[4] Wen-jing WU,Chun-chun DENG,Hong-fei JIA,Shu-hang SUN. Evaluation of road network unblocked reliability and identification of critical sections under influence of flooding [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1250-1257.
[5] Shu-hong MA,Jun-jie ZHANG,Xi-fang CHEN,Guo-mei LIAO. Identifying urban functional structures using time-series taxi data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 603-613.
[6] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[7] Yu-ran LI,Fei WANG,Cai-hua ZHU,Fei HAN,Yan LI. Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 577-590.
[8] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[9] Chang-jiang ZHENG,Tong-tong TAO,Zhi-chao CHEN. Cascading failure model based on adjustable redistribution of traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2441-2450.
[10] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[11] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[12] Da-yi QU,Hao-min LIU,Zi-yi YANG,Shou-chen DAI. Dynamic allocation mechanism and model of traffic flow in bottleneck section based on vehicle infrastructure cooperation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2187-2196.
[13] Gui-zhen CHEN,Hui-ting CHENG,Cai-hua ZHU,Yu-ran LI,Yan LI. A risk evaluation method for urban intersections considering drivers' physiological information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1277-1284.
[14] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[15] Xiu-jian YANG,Xiao-han JIA,Sheng-bin ZHANG. Characteristics of mixed traffic flow taking account effect of dynamics of vehicular platoon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 947-958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Jing,Wu Yun-ping,Yang Zhong-ang,Guo Li-shu,Wang Jun,Li You-de1,Li Chun-feng . Suspension damping control strategy for vehicle attitude control system[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 24 -28 .
[2] Li Hong-ji, He Ran, Zhang Wan-xi, Sun Guo-en, Zhang Li, Niu Yong-sheng . Preparation and properties of nanoTiO2/EVA composites [J]. 吉林大学学报(工学版), 2006, 36(05): 710 -0714 .
[3] Chen Hong-bin,Feng Jiu-chao . Generating method of chaotic frequency hopping codes and its application in communications[J]. 吉林大学学报(工学版), 2008, 38(01): 211 -218 .
[4] Cai Li, Wang Yunmei. Empirical research on processbasedview valuation approach of venture[J]. 吉林大学学报(工学版), 2006, 36(02): 279 -284 .
[5] Liu Jin-shan , Guo Ying-nan , Tan Man-zhi , Huang Wei-jun , Yang Li-ping, Gao Yuan. HCCI operating region of internal combustion engine with ethanol as fuel[J]. 吉林大学学报(工学版), 2006, 36(03): 327 -0330 .
[6] . [J]. 吉林大学学报(工学版), 2008, 38(02): 0 .
[7] Wei Li-ying,Lü Kai . Bicycle following behavior at signalized intersection[J]. 吉林大学学报(工学版), 2008, 38(01): 53 -56 .
[8] Shao Bao-dong Sun Zhao-wei,Wang Li-feng . Optimization design of structural size of microchannel cooling heat sink[J]. 吉林大学学报(工学版), 2007, 37(02): 313 -0318 .
[9] Ren Lu-quan,Sun Shao-ming,Xu Cheng-yu . Noise reduction mechanism of nonsmooth leading edge of owl wing
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 126 -0131 .
[10] SUN Zhi-xin, YANG Xi, GONG Jing . New P2P architecture description language [J]. 吉林大学学报(工学版), 2008, 38(05): 1131 -1135 .