Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 2076-2081.doi: 10.13229/j.cnki.jdxbgxb.20240525

Previous Articles     Next Articles

Multi spectral image fusion algorithm for unmanned aerial vehicles based on gradient consistency constraint

Yi TANG1,2(),Bing-chuan LU1,Hong-chen YI4,Cheng YU3,Bin NAN3   

  1. 1.School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,China
    2.National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology,Suzhou University of Science and Technology,Suzhou 215009,China
    3.School of Geography Science and Geomatics Engineering,Suzhou University of Science and Technology,Suzhou 215009,China
    4.School of Environment,Northeast Normal University,Changchun 130024,China
  • Received:2024-05-14 Online:2025-06-01 Published:2025-07-23

Abstract:

A UAV multispectral image fusion algorithm based on gradient consistency constraint was proposed to address the issues of multiple types of ground objects, difficulty in extracting features from UAV spectral images, and poor fusion performance caused by uncertain spectral information. By using the beam adjustment algorithm to ensure the consistency between the coordinates of ground points and the projected coordinates of images, and using wavelet transform to extract image features, combined with gradient consistency algorithm to construct the target fusion function, high-quality image fusion is achieved through iterative operation. Experimental results have shown that the fused image of this method has clear details, high resolution, and good information integrity, providing strong technical support for the subsequent application of unmanned aerial vehicle multispectral images, especially in the fields of environmental monitoring, agricultural evaluation, etc, it has shown broad application prospects.

Key words: remote sense, gradient consistency constraint, multi spectral imaging of drones, image fusion, local energy, edge gradient

CLC Number: 

  • TP227

Table.1

Dataset and experimental related parameters"

参数名称参数取值
影像大小256×256
平均时间消耗/s0.21
显色指数95.2
辐射通量/MW0.518
光效/(lm·W-179.26
无人机成像射线/nm104
成像点范围/mm800~1 200

Fig.1

Original UAV multispectral image"

Fig.2

Comparison results of four fusion methods"

Fig.3

Information entropy curves of four fusion methods"

[1] 方帅, 闫明畅, 张晶, 等. 基于细节关注的高光谱与多光谱图像融合算法[J]. 遥感学报, 2022, 26(12): 2594-2602.
Fang Shuai, Yan Ming-chang, Zhang Jing, et al. A fusion algorithm for hyperspectral and multispectral images based on detail attention[J]. Journal of Remote Sensing, 2022, 26(12): 2594-2602.
[2] 文刚, 马仪, 周仿荣, 等. 基于WAResNet和GS+ATPRK的多光谱和全色影像融合[J]. 桂林理工大学学报, 2023, 43(2): 326-332.
Wen Gang, Ma Yi, Zhou Fang-rong, et al. Pansharpening methods for multispectral images based on WAResNet and GS+ATPRK[J]. Journal of Guilin University of Technology, 2023, 43(2): 326-332.
[3] 王欧, 罗小波. 基于细节信息提取的全色与多光谱图像融合方法[J]. 红外技术, 2022, 44(9): 920-928.
Wang Ou, Luo Xiao-bo. Panchromatic and multispectral images fusion method based on detail information extraction[J]. Infrared Technology, 2022, 44(9): 920-928.
[4] 廖斌, 杨琳琳, 靳昌伟, 等. 基于全局结构和自相似性约束的高光谱多光谱图像融合[J]. 激光杂志, 2023, 44(7): 115-120.
Liao Bin, Yang Lin-lin, Jin Chang-wei, et al. Image fusion based on global structure and self-similarity constraint[J]. Laser Journal, 2023, 44(7): 115-120.
[5] 席顺忠, 李勇, 葛莹, 等. 水体强反光环境中无人机多光谱影像的辐射一致性校正[J]. 农业工程学报, 2022, 38(2): 192-200.
Xi Shun-zhong, Li Yong, Ge Ying, et al. Radiometric consistency correction of UAV multispectral images in strong reflective water environment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 192-200.
[6] Xu X, Liu G, Bavirisetti D P, et al. Fast d etection fusion network (FDFnet): An end to end object detection framework based on heterogeneous image fusion for power facility inspection[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4496-4505.
[7] 范明虎, 薛昊润, 臧文乾, 等. 基于Atrous-HIS变换的多光谱遥感影像多核并行融合方法[J]. 河南师范大学学报:自然科学版, 2022, 50(4): 76-81.
Fan Ming-hu, Xue Hao-run, Zang Wen-qian, et al. A parallel multi-core fusion method for multispectral remote sensing images based on Atrous-HIS transform[J]. Journal of Henan Normal University (Natural Science Edition), 2022, 50(4): 76-81.
[8] 冯福存, 常莉红. 一种基于内容增强的可见光-红外线图像融合方法[J]. 吉林大学学报: 理学版, 2021, 59(3): 595-601.
Feng Fu-cun, Chang Li-hong. Fusion method based on content enhancement for visible-infrared image[J]. Journal of Jilin University: Science Edition, 2021, 59(3): 595-601.
[9] 李雄飞, 吴佳婧, 张小利, 等. 基于相对总变差结构提取的遥感图像融合[J]. 吉林大学学报: 工学版, 2021, 51(5): 1775-1784.
Li Xiong-fei, Wu Jia-jing, Zhang Xiao-li, et al. Remote sensing image fusion algorithm based on relative total variation structure extraction[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1775-1784.
[10] 张永军, 王梦欣, 万一, 等. 高分七号卫星影像融合中的全色-多光谱配准误差补偿模型[J]. 武汉大学学报: 信息科学版, 2023, 48(7): 1029-1038.
Zhang Yong-jun, Wang Meng-xin, Wan Yi, et al. Compensation model of GF-7 panchromatic and multispectral image registration error[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1029-1038.
[11] 尚宇辉, 孟伟, 房健, 等. 改进径向基函数插值法的多聚焦图像滤波融合[J]. 计算机仿真, 2024, 41(2): 222-226.
Shang Yu-hui, Meng Wei, Fang Jian, et al. Multi focus image filtering and fusion based on improved radial basis function interpolation[J]. Computer Simulation, 2024, 41(2): 222-226.
[12] 吕开云, 侯昭阳, 龚循强, 等. 一种基于ASR和PAPCNN的NSCT域遥感影像融合方法[J]. 遥感技术与应用, 2022, 37(4): 829-838.
Kai-yun Lü, Hou Zhao-yang, Gong Xun-qiang, et al. A remote sensing image fusion method based on ASR and PAPCNN in NSCT domain[J]. Remote Sensing Technology and Application, 2022, 37(4): 829-838.
[1] Yan-feng LI,Ming-yang LIU,Jia-ming HU,Hua-dong SUN,Jie-yu MENG,Ao-ying WANG,Han-yue ZHANG,Hua-min YANG,Kai-xu HAN. Infrared and visible image fusion based on gradient transfer and auto-encoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1777-1787.
[2] Wen-cai SUN,Xu-ge HU,Zhi-fa YANG,Fan-yu MENG,Wei SUN. Optimization of infrared-visible road target detection by fusing GPNet and image multiscale features [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2799-2806.
[3] Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648.
[4] Sheng JIANG,Peng-lang WANG,Zhi-ji DENG,Yi-ming BIE. Image fusion algorithm for traffic accident rescue based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3472-3480.
[5] Xuan-jing SHEN,Xue-feng ZHANG,Yu WANG,Yu-bo JIN. Multi⁃focus image fusion algorithm based on pixel⁃level convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1857-1864.
[6] Xiong-fei LI,Jia-jing WU,Xiao-li ZHANG,Ze-yu WANG,Yun-cong FENG. Remote sensing image fusion algorithm based on relative total variation structure extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1775-1784.
[7] Guang-qiu CHEN,Yu-cun CHEN,Jia-yue LI,Guang-wen LIU. Infrared and visible image fusion based on discrete nonseparable shearlet transform and convolutional sparse representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 996-1010.
[8] Man CHEN,Yong ZHONG,Zhen-dong LI. Multi-focus image fusion based on latent lowrank representation combining lowrank representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 297-305.
[9] Xiong-fei LI,Jing WANG,Xiao-li ZHANG,Tie-hu FAN. Multi-focus image fusion based on support vector machines and window gradient [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 227-236.
[10] Xiong-fei LI,Lu SONG,Xiao-li ZHANG. Remote sensing image fusion based on cooperative empirical wavelet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1307-1319.
[11] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[12] YIN Ming, ZHAN Yin-wei, PEI Hai-long. Co-sparse analysis operator learning for image fusion [J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[13] WANG Xiao-wen, ZHAO Zong-gui, PANG Xiu-mei, LIU Min. Image fusion method based on visual saliency maps [J]. 吉林大学学报(工学版), 2014, 44(4): 1203-1208.
[14] YANG Yang, DAI Ming, ZHOU Luo-yu, SUN Ming-chao. Multifocus image fusion based on nonsubsampled Bandelet transform [J]. 吉林大学学报(工学版), 2014, 44(2): 525-530.
[15] WANG Xin, LI Wei-lin, LIU Fu. New algorithm of CT/MRI medical image fusion based on wavelet domain [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wu Bao-lin,Cao Xin-bin . Satellite formation maneuver control using model predictive control[J]. 吉林大学学报(工学版), 2007, 37(01): 218 -223 .
[2] Kou Shu-qing, Qiao Jian, Yang Shen-hua, Zhang Chi . Analysis of numerical simulation of hollow assembled camshaft
on knurling connection
[J]. 吉林大学学报(工学版), 2007, 37(05): 1106 -1110 .
[3] LIU Yan1,GUAN Xiao-fang2,SONG Yu-quan2 . Key issues faced by Chinese car on the way to the world[J]. 吉林大学学报(工学版), 2009, 39(01): 274 -280 .
[4] LIU Ming-jun, GUO Ji-fu, GAO Li-ping, ZHANG De-xin, MAO Bao-hua. Analysis and modeling of private car usage through travel behavior[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 25 -0030 .
[5] Wei Yueyuan,Lin Cheng,Lin Yi,He Hongwen,Shen Rongwei. Factors Influencing Hybrid Electric Vehicle System Efficiency[J]. 吉林大学学报(工学版), 2006, 36(01): 20 -0024 .
[6] Qi Ying-hong, Cao Xi-bin. Solution for optimal 3impulse rendezvous problem[J]. 吉林大学学报(工学版), 2006, 36(04): 608 -612 .
[7] Liu Feng,Wang Xin-wei . Differential quadrature method for nonlinear buckling analysis of tubing in straight wells [J]. 吉林大学学报(工学版), 2007, 37(01): 234 -238 .
[8] ZHANG Ying-zhi,SHEN Gui-xiang,WU Su,XUE Yu-xia,He Yu . 3-parameter Weibull distribution for random
truncated NC machine tool fault data
[J]. 吉林大学学报(工学版), 2009, 39(02): 378 -0381 .
[9] Wan Peng,Sun Yu,Sun Yong-hai . Recognition method of rice kernel shape based on computer vision[J]. 吉林大学学报(工学版), 2008, 38(02): 489 -0492 .
[10] MIAO Ming, JIANG Bo, ZHANG Tao . Structure and functional properties of chickpea starches of Kabuli and Desi varieties[J]. 吉林大学学报(工学版), 2008, 38(06): 1495 -1500 .