Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2223-2232.doi: 10.13229/j.cnki.jdxbgxb.20231172

Previous Articles    

Safety distance between semi-underground hub interchange ramp tunnel exit and secondary diversion points

Hong-cheng GE1(),Zhong-yin GUO1,Can-can SONG2(),Shi-wei WANG3   

  1. 1.Key Laboratory of Road and Traffic Engineering,Ministry of Education,Tongji University,Shanghai 201804,China
    2.School of Civil Engineering,Shanghai Normal University,Shanghai 201418,China
    3.China Railway Design Corporation,Tianjin 300308,China
  • Received:2023-10-30 Online:2025-07-01 Published:2025-09-12
  • Contact: Can-can SONG E-mail:ghc1997@tongji.edu.cn;songcancan@shnu.edu.cn

Abstract:

This study aims to determining the safe distance between the exit of the semi-underground hub interchange ramp tunnel and the secondary diversion point, so as to optimize line design and conserve land. In this study, the theoretical safe distances were calculated based on the decomposition of driving behavior and kinematic equations. Data were gathered from 39 drivers at four different distances through driving simulation tests. Speed standard deviation, brake pedal force, and lane offset served as selected indicators via the MW test. Factor analysis was employed to construct a driving safety risk calculation model and quantify the risk scores under different distance. The results show that the theoretical safety distance was 164.8 meters, and the distance with the lowest driving safety risk was 250 meters.

Key words: traffic engineering, semi-underground hub interchanges, freeway tunnels, safety distances, driving simulation, driving behavior

CLC Number: 

  • U491

Fig.1

Theoretical safety distance composition for RTE-SDP sections"

Table 1

Calculated value of theoretical safety distance"

L1L2L3L4L5总距离
41.712.848.648.613.1164.8

Fig.2

Eight-degree-of-freedom driving simulator"

Fig.3

Experimental roadway scene"

Fig.4

Driving simulation experiment process and scenarios"

Table 2

Scene realism questionnaire results"

场景均值标准差
路线模型8.400.67
结构物模型8.210.83
交通工程及沿线设施模型7.540.99
环境模型7.821.00

Table 3

Calculated value of actual safety distance"

距离变量/m隧道出口运行速度/(km·h-1实际L1/mL4范围的V85/(km·h-1实际L4/m理论确认距离/m
17053.744.846.845.558.6
20055.246.051.049.662.7
25058.849.053.552.065.1
30059.249.348.547.260.3

Fig.5

Changes in driving behavior indicators at different distances"

Table 4

MWU test p-value for indicators of driving behavior in the pre- and post-stages"

指标170 m200 m250 m300 m
速度标准差6.56×10-10***6.62×10-12***8.73×10-9***0.000 13***
车道偏移量3.55×10-11***6.04×10-12***2.30×10-10***0.000 56***
刹车踏板力度3.99×10-11***4.78×10-13***2.45×10-8***0.000 12***

Fig.6

Comparison of driving behavior indicators in risk areas"

Table 5

MWU test p-value for driving behavior indicators in risk areas under different distance conditions"

指标

组别

运行速度标准差MWU检验平均车道偏移量MWU检验平均刹车踏板力度MWU检验
170 m200 m250 m300 m170 m200 m250 m300 m170 m200 m250 m300 m
170 m-0.1180.020*0.774-0.0730.0780.000***-0.1400.1420.022*
200 m0.118-0.4560.1250.073-0.7620.009**0.140-0.9240.587
250 m0.020*0.456-0.028*0.0780.762-0.2280.1420.924-0.463
300 m0.7740.1250.028*-0.000***0.009**0.228-0.022*0.5870.463-

Table 6

KMO test and Bartlett's test for sphericity"

KMO检验值0.689
Bartlett球形检验近似卡方94.014
自由度3
显著性0.000

Table 7

Common factor variance"

变量初始提取
运行速度标准差/(km·h-11.0000.933
平均车道偏移量/m1.0001.000
平均刹车踏板力度/(da·N)1.0000.933

Table 8

Total variance interpretation"

成分初始特征值提取载荷平方和旋转载荷平方和
总计方差百分比/%累积/%总计方差百分比/%累积/%总计方差百分比/%累积/%
11.86362.08662.0861.86362.08662.0861.86262.07762.077
21.00333.41995.5061.00333.41995.5061.00333.42895.506
30.1354.494100.000

Table 9

Rotated component matrix"

变量成分1成分2
运行速度标准差/(km·h-10.965
平均车道偏移量/m1.000
平均刹车踏板力度/da·N0.964

Table 10

Matrix of factor score coefficients"

变量成分1成分2
运行速度标准差/(km·h-10.5180.038
平均车道偏移量/m-0.0050.997
平均刹车踏板力度/da·N0.519-0.043

Fig.7

Safety risk scores for traveling in risk areas under different distance conditions"

[1] 刘斌, 李刚, 黄春富, 等. 基于可靠度的地下互通立交匝道坡度指标研究 [J]. 公路, 2022, 67(10): 9-17.
Liu Bin, Li Gang, Huang Chun-fu, et al. Research on the slope index of underground interchange ramps based on reliability[J]. Highway, 2022, 67(10): 9-17.
[2] 袁胜强, 景啸, 史程祥. 城市地下互通立交通行能力计算 [J]. 同济大学学报:自然科学版, 2021, 49(2): 236-442.
Yuan Sheng-qiang, Jing Xiao, Shi Cheng-xiang. Calculation of traffic capacity of urban underground interchanges[J]. Journal of Tongji University(Natural Science Edition), 2021, 49(2): 236-242.
[3] 李少刚. 地下互通立交隧道设计参数优化及施工技术研究[D]. 北京: 北京交通大学土木建筑工程学院, 2011.
Li Shao-gang. Optimization of design parameters and construction technology for underground interchange tunnels[D]. Beijing: School of Civil Engineering, Beijing Jiaotong University, 2011.
[4] 史科. 高速公路互通立交二次分离出口匝道通行能力分析[D]. 南京: 东南大学交通学院, 2021.
Shi Ke. Analysis of the traffic capacity of the secondary separation exit ramp of the highway interchange[D]. Nanjing: School of Transportation, Southeast University, 2021.
[5] Lyu N C, Wu C Z, Fu Q. Analysis traffic safety for highway off-rampbased on visual reaction time on traffic signs[C]∥International Conference on Transportation Information and Safety(ICTIS), Piscataway, USA, 2015: 25-28.
[6] 冯志成, 雷桂荣, 蒋若曦, 等. 苜蓿叶分离式互通立交二次定向分流匝道合理长度研究 [J]. 公路与汽运, 2017, 182(5): 28-32, 37.
Feng Zhi-cheng, Lei Gui-rong, Jiang Ruo-xi, et al. Study on the reasonable length of the secondary directional diversion ramp of the alfalfa leaf-separated interchange[J]. Highways and Automotive Applications, 2017, 182(5): 28-32, 37.
[7] Shang T, Wu P, Lian G, et al. Influences of exit advance guide signs on the trajectory and speed of passenger cars in highway tunnels[J]. Journal of Advanced Transportation, 2021(9): No.8453439.
[8] 孙明玲, 赵源, 葛书芳. 双车道高速公路隧道与互通式立交出口最小间距分析[J]. 公路, 2014, 59(7): 274-278.
Sun Ming-ling, Zhao Yuan, Ge Shu-fang. Analysis of the minimum spacing between the double-lane highway tunnel and the interchange exit[J]. Highway, 2014, 59(7): 274-278.
[9] 牛敏强, 蒲华乔, 符锌砂, 等. 基于稳定流态下隧道与主线出入口最小净距研究 [J]. 中外公路, 2021, 41(4): 261-267.
Niu Min-qiang, Pu Hua-qiao, Fu Xin-sha, et al. Study on the minimum net distance between tunnels and main line entrances and exits under stable flow conditions[J]. Journal of China and Foreign Highway, 2021, 41(4): 261-267.
[10] 邵阳, 潘兵宏, 王云泽. 高速公路互通式立交连续出口和入口间距研究 [J]. 铁道科学与工程学报, 2016, 13(8): 1642-1651.
Shao Yang, Pan Bing-hong, Wang Yun-ze. Study on the spacing between continuous exits and entrances of highway interchanges[J]. Journal of Railway Science and Engineering, 2016, 13(8): 1642-1651.
[11] 程传乐. 基于变异型集散道模型的高速公路互通式立交最小间距研究[D]. 西安: 长安大学公路学院, 2019.
Cheng Chuan-le. Study on the minimum spacing of highway interchanges based on the variant-type collection and distribution road model[D]. Xi'an: School of Highways, Chang'an University, 2019.
[12] 吴文静, 战勇斌, 杨丽丽, 等. 考虑安全间距的合流区可变限速协调控制方法 [J]. 吉林大学学报: 工学版, 2022, 52(6): 1315-1323.
Wu Wen-jing, Zhan Yong-bin, Yang Li-li, et al. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[13] .公路立体交叉设计细则 [S].
[14] .公路路线设计规范 [S].
[15] .公路隧道设计规范 [S].
[16] .城市地下道路工程设计规范 [S].
[17] 潘兵宏, 周锡浈, 周廷文, 等. 高速公路互通式立交出口识别视距计算模型 [J]. 同济大学学报: 自然科学版, 2020, 48(9): 1312-1318.
Pan Bing-hong, Zhou Xi-zhen, Zhou Ting-wen, et al. Calculation model of recognition sight distance for highway interchange exits[J]. Journal of Tongji University(Natural Science Edition), 2020, 48(9): 1312-1318.
[18] 赵一飞, 陈敏, 潘兵宏. 隧道与互通式立交出口最小间距需求分析 [J]. 长安大学学报:自然科学版, 2011, 31(3): 68-71.
Zhao Yi-fei, Chen Min, Pan Bing-hong. Analysis of the minimum spacing requirements between tunnels and interchange exits[J]. Journal of Chang'an University(Natural Science Edition), 2011, 31(3): 67-71.
[19] 陈湘. 公路交通标志优化设计研究 [J]. 科学技术创新, 2023(6): 177-180.
Chen Xiang. Study on optimal design of highway traffic signs[J]. Scientific and Technological Innovation, 2023(6): 177-180.
[20] 徐进, 曾粤. 高速条件下隧道出入口行驶速度特性 [J]. 交通运输工程学报, 2021, 21(4): 197-209.
Xu Jin, Zeng Yue. Characteristics of driving speed at tunnel entrances and exits at high speed[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 197-209.
[1] Sheng-yu YAN,Fu-hua WEN,Jin WU,Yi ZHENG,Shi-jie HAO,Wen-bo YOU. Algorithm for adapting transportation capacity of mountainous scenic areas in festival based on highway traffic data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1576-1587.
[2] Hua-zhen FANG,Li LIU,Qing GU,Xiao-feng XIAO,Yu MENG. Driving intention recognition based on trajectory prediction and extreme gradient boosting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 623-630.
[3] Huai-xin LI,Chang-gen YAN,Bin LIN,Yu-ling SHI. Strength and statistical damage model in whole process of clay-concrete combined body [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 245-255.
[4] Rong-han YAO,Wen-yan QI,Hong-yu HU,Xiao-jing DU,Yan-feng QIAO,Li-bing WANG. Multi-lane cellular automata model considering bus-high occupancy vehicle lane [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 162-174.
[5] Li-xin YAN,Tao ZENG,Yi HE,Jun-hua GUO,Xin-hui HU. Man-machine takeover behavior sequence coding and analysis of shared driving intelligent vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2547-2556.
[6] Rong-gui ZHOU,Pei GAO,Yu-xuan LI,Jian ZHOU. Abnormal driving behavior thresholds of highway minibuses based on trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2581-2587.
[7] Yun PU,Yin XU,Hai-xu LIU,Yi-fan TAN. An improved car⁃following model for connected and automated vehicles considering impact of multiple vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1285-1292.
[8] Qing-lu MA,Hao YAN,Zhen-yu NIE,Yang-mei LI. Cooperative control method for intelligent networked vehicles in ramp confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1332-1346.
[9] Qian CAO,Zhi-hui LI,Peng-fei TAO,Hai-tao LI,Yong-jian MA. Deployment of heterogeneous sensors for traffic accident detection and prevention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 969-978.
[10] Ren-xiang CHEN,Chao-chao HU,Xiao-lin HU,Li-xia YANG,Jun ZHANG,Jia-le HE. Driver distracted driving detection based on improved YOLOv5 [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 959-968.
[11] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[12] Xin ZHANG,Qi-zhou HU,Jun HE,Xiao-yu WU. Traffic condition diagnosis of confluence areas considering traffic infarction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 478-484.
[13] Wei-hua ZHANG,Jia-ming LIU,Li-peng XIE,Heng DING. Lane⁃changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 469-477.
[14] Shi-feng NIU,Shi-jie YU,Yan-jun LIU,Chong MA. Real-time detection method of angry driving behavior based on bracelet data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3505-3512.
[15] De-lin LI,Jun-xian CHEN,Yong-gang WANG,Lu WANG,Zhao-qing SHEN. Identification of driving behavior on steep sharp curves based on latent class model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3526-3533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!