Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2547-2556.doi: 10.13229/j.cnki.jdxbgxb.20221391

Previous Articles    

Man-machine takeover behavior sequence coding and analysis of shared driving intelligent vehicle

Li-xin YAN1(),Tao ZENG1,Yi HE2(),Jun-hua GUO1,Xin-hui HU1   

  1. 1.School of Transportation Engineering,East China Jiaotong University,Nanchang 330013,China
    2.Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China
  • Received:2022-10-31 Online:2024-09-01 Published:2024-10-28
  • Contact: Yi HE E-mail:yanlixinits@163.com;heyi@whut.edu.cn

Abstract:

Co-driving autonomous vehicles have manual and automated driving mode. The driving behavior characteristics of co-driving autonomous vehicles will show new characteristics. The driving behavior data of 15 drivers are collected. The characteristic map of driving behavior is constructed by using symbol aggregation approximation method and video recording calibration method. The common behavior sequence of autonomous vehicle man-machine takeover is excavated based on longest common subsequence algorithm. The results show that when obstacles appear in front of the autonomous vehicle the common behavior sequence is: looking ahead and pressing the brake pedal - observing the left rearview mirror and turning on the left turn signal - turning the steering wheel to the left - closing left turn signal. This study may helpful to improve the effectiveness of autonomous vehicle takeover.

Key words: engineering of transportation and communication system, human-machine takeover, driving behavior, symbolic aggregate approximation, graph

CLC Number: 

  • U491.1

Table 1

Partial data table"

速度/(km·h-1加速度/(m·s-2油门踏板深度/%制动踏板深度/%驾驶状态
7.88-0.35001
?????
29.555.810.6700
34.753.220.6700

Table 2

Basic operation code correspondence table"

驾驶操作基本元素驾驶操作基本元素
注视前方A向左打转向盘E1
观察左后视镜B1向右打转向盘E2
观察右后视镜B2左转向灯开启F1
油门踏板踩下C1左转向灯关闭F2
油门踏板松开C2右转向灯开启G1
制动踏板踩下D1右转向灯关闭G2
制动踏板松开D2按喇叭H

Table 3

The number of divided characters m is a breakpoint from 3 to 10"

βim
345678910
β1-0.43-0.67-0.84-0.97-1.07-1.15-1.22-1.28
β20.430-0.25-0.43-0.57-0.67-0.76-0.84
β30.670.250-0.18-0.32-0.43-0.52
β40.840.430.180-0.14-0.25
β50.970.570.320.140
β61.070.670.430.25
β71.150.760.52
β81.220.84
β91.28

Fig.1

Original velocity and acceleration time series"

Fig.2

Normalized and dimensionality reduction velocity and acceleration time series"

Fig.3

Symbolic velocity and acceleration time series"

Table 4

Driving takeover time series symbolization"

参数降维后的长度N字符数m符号化编码
速度154caaaabccddddcbb
加速度154aaccdcdcdcababb
油门踏板深度94abdddbaa
制动踏板深度94dbbbbbbb
角速度73cabbbb
前轮转角154bbccdddcaaaaccc
角加速度93cabcbaba

Fig.4

Statistical distribution of velocity and acceleration symbols"

Table 5

Pearson correlation analysis"

车辆运动行为Sig.(双侧)相关系数
速度0.0000.537**
加速度0.000-0.503**
油门踏板深度0.3150.120
制动踏板深度0.0000.634**
俯仰角0.1930.026
前轮转角0.026-0.468
横摆角速度0.5420.008

Table 6

Driving takeover vehicle motion time series symbolization"

被试者 序号车辆运动指标
速度加速度制动踏板深度
1daaaabccccdddbbbcccccdddaaddbbbbbbb
2dbaaabcddcccaabcdddcbaccddbbbbbb
3dbaaabdddcbccaabcdddbaacccdcbbbbbbb
4daaabcdddcbbccaacccdcabbccdcdcbbbbbbb
5dcaaabcddcbaabcccddbbcdbbbbbb
6daaabdddcbccaaccddbbbcdddbbbbbbb
7caaaabcdddddaaccccdddabbdcbbbbbb
8baaabcdddccaacdccdcaacdbbbbbb
9dbaaabccccddaabcccdbdddadbbbbbbb
10dbaaabbdddaabccccdcddbbbbbb
11daaabcdddbcbacccccdcbccbdbbbbbbbb
13daaaaabccddddddaaccccccccccbcbdbbbbbbb
14caaaabbcccccddaacccccdcacdccdbbbbbb
15caaaabccddddcbbaaccdcdcdcababbdbbbbbbb

Table 7

Driving behavior time series symbolization"

被试者序号驾驶行为次数符号化编码车辆运动轨迹变化
110ad1b1f1e1d2af2c1c2左变道
28ad1d2f1b1e1f2a左变道
39d1ad2f1b1e1af2c1c2左变道
47ad1g1b2e2ag2右变道
510ad1b1b2f1b1e1af2c2左变道
69ad1af1b1e1f2d2c1左变道
79ad1d2f1b1e1ac1f2左变道
89ad1d2f1b1e1f2c1c2左变道
910d1ab1af1b1e1f2d2c1左变道
1010ad1d2f1b1e1ac1f2c2左变道
1115ad1d2f1b1e1af2g1b2e2ac1g2c2左变道+右变道
139ad1b1f1ae1d2c1f2左变道
148ad1f1b1e1af2d2左变道
1511a1d1b1a1f1b1e1a1f2d2c1左变道

Fig.5

Left lane change operation behavior characteristic graph"

Table 8

Longest common string of left lane change operation characters"

被试者序号1235678910131415
1

AD1B1F1E1

D2AF2C1C2

AD1

B1E1A

AB1E1

AF2C1C2

AD1B1F1

E1AF2C2

AD1B1

E1D2C1

AD1B1

E1AF2

AD1B1E1

F2C1C2

AB1F1

E1D2C1

AD1B1

E1AF2C2

AD1B1

F1E1D2F2

AD1B1

E1AF2

AD1B1F1

E1AF2C1

2

AD1D2F1

B1E1F2A

AD2F1

B1E1F2

AD1F1

B1E1F2

AD1F1

B1E1F2

AD2D2

F1B1E1F2

AD2D2

F1B1E1F2

AF1

B1E1F2

AD2D2

F1B1E1F2

AD1

F1E1F2

AD1F1

B1E1F2

AD1F1

B1E1F2

3

D1AD2F1B1

E1AF2C1C2

D1F1B1

E1AF2C2

D1AF1

B1E1F2C1

D1D2F1

B1E1AF2

D1D2F1B1

E1F2C1C2

D1AF1

B1E1F2C1

D1D2F1B1

E1AF2C2

D1AD2F2

D1F1B1

E1AF2

D1AF1B1

E1AF2C1

5

AD1B1B2F1

B1E1AF2C2

AD1F1

B1E1F2

AD1F1

B1E1AF2

AD1F1

B1E1F2C2

AB1F1

B1E1F2

AD1F1B1

E1AF2C2

AD1B1

F1E1F2

AD1F1

B1E1AF2

AD1B1F1

B1E1AF2

6

AD1AF1B1

E1F2D2C1

AD1F1

B1E1F2

AD1F1

B1E1F2C1

AAF1B1

E1F2D2C1

AD1F1

B1E1F2

AD1A

E1D2C1

AD1F1B1

E1F2D2

AD1AF1

B1E1F2D2C1

7

AD1D2F1

B1E1AC1F2

AD2D2

F1B1E1C1

AF1

B1E1C1

AD1D2F1

B1E1AC1F2

AD1F1

E1C1F2

AD1F1B1

E1AF2

AD1F1B1

E1AC1

8

AD1D2F1

B1E1F2C1C2

AF1B1

E1F2C1

AD1D2F1

B1E1F2C2

AD1F1

E1F2

AD1F1

B1E1F2

AD1F1

B1E1F2C1

9

D1AB1AF1

B1E1F2D2C1

D1F1

B1E1F2

D1B1A

E1D2C1

D1F1B1

E1F2D2

D1B1AF1

B1E1F2D2C1

10

AD1D2F1B1

E1AC1F2C2

AD1F1

E1C1F2

AD1F1

B1E1AF2

AD1F1B1

E1AC1

13

AD1B1F1

AE1D2C1F2

AD1

B1AD2

AD1B1F1

AD2C1

14

AD1F1B1

E1AF2D2

AD1F1B1E1

AF2D2

15

AD1B1AF1B1

E1AF2D2C1

Fig.6

Number of characters for driving takeover"

Fig.7

Driving takeover common behavior graph"

1 Lotz A, Russwinkel N, Wohlfarth E. Take-over expectation and criticality in level 3 automated driving: a test track study on take-over behavior in semi-trucks[J]. Cognition Technology & Work, 2020, 22(4): 733-744.
2 倪定安, 郭凤香, 周燕宁. 无信号控制交叉口老年驾驶人转向行为图谱研究[J]. 交通信息与安全, 2022, 40(3): 108-117.
Ni Ding-an, Guo Feng-xiang, Zhou Yan-ning. A graph study on turning behaviors of older drivers at unsignalized intersections[J]. Journal of Transport Information and Safety, 2022, 40(3): 108-117.
3 Cai H, Hu Z, Chen Z, et al. A driving fingerprint map method of driving characteristic representation for driver identification[J]. IEEE Access, 2018, 6: 71012-71019.
4 Balsa-Barreiro J, Valero-Mora P M, Berné-Valero J L, et al. GIS mapping of driving behavior based on naturalistic driving data[J]. International Journal of Geo-Information, 2019, 8(5): No.226.
5 万平, 吴超仲, 林英姿, 等. 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报:工学版, 2017, 47(5): 1426-1435.
Wan Ping, Wu Chao-zhong, Lin Ying-zi, et al. Driving anger detection based on multivariate time series features of driving behavior[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1426-1435.
6 严利鑫, 冯进培, 郭军华, 等. 不同险态情景下共驾型智能车辆接管行为特征分析[J].吉林大学学报: 工学版, 2024, 54(3): 683-691.
Yan Li-xin, Feng Jin-pei, Guo Jun-hua, et al. Analysis of characteristics of the takeover behavior of co-driving intelligent vehicles under different dangerous scenarios[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(3): 683-691.
7 Peng H, Chen F, Chen P. Examining the effects of visibility and time headway on the takeover risk during conditionally automated driving[J]. International Journal of Environmental Research and Public Health, 2022, 19(21): No. 13904.
8 Yang S, Kuo J, Lenné M G. Effects of distraction in on-road level 2 automated driving: impacts on glance behavior and takeover performance[J]. Human Factors, 2021, 63(8): 1485-1497.
9 Li Y, Sun D, Zhao M, et al. MPC-based switched driving model for human vehicle co-piloting considering human factors[J]. Transportation Research Part C Emerging Technologies, 2020, 115: No.102612.
10 王彦峰, 陈浩林, 赵晓华, 等. 驾驶次任务沉浸等级对接管行为的影响分析[J]. 交通信息与安全, 2022, 40(1): 135-143.
Wang Yan-feng, Chen Hao-lin, Zhao Xiao-hua, et al. A study on the impact of immersion levels of non-driving-related tasks on takeover behavior[J]. Journal of Transport Information and Safety, 2022, 40(1): 135-143.
11 孙川. 基于自然驾驶数据的车辆驾驶风险辨识及控制研究[D]. 武汉: 武汉理工大学交通与物流工程学院, 2016.
Sun Chuan. Identification and control for driving risk of vehicle using naturalistic driving data[D]. Wuhan: School of Transportation and Logistics Engineering, Wuhan University of Technology, 2016.
12 Chen H, Feng S, Xin P, et al. Dangerous driving behavior recognition and prevention using an autoregressive time-series model[J]. Tsinghua Science and Technology, 2017, 22(6): 682-690.
13 衡红军, 刘静. 基于混合方法的多维时间序列驾驶异常点检测[J]. 计算机工程, 2020, 46(3): 99-104.
Heng Hong-jun, Liu Jing. Driving outlier detection using multidimensional time series based on hybrid methods[J]. Computer Engineering, 2020, 46(3): 99-104.
14 Le X T, Tran T M, Nguyen H T. An improvement of SAX representation for time series by using complexity invariance[J]. Intelligent Data Analysis, 2020, 24(3): 625-641.
15 Zhao A, Chen R, Qi Y, et al. Evaluating the impact of criminalizing drunk driving on road-traffic injuries in guangzhou, China: a time-series study[J]. Journal of Epidemiology, 2016, 26(8): 433-439.
16 Hung N, Anh D T. An improvement of PAA for dimensionality reduction in large time series databases[C]∥Pacific Rim International Conference on Artificial Intelligence: Trends in Artificial Intelligence. Berlin: Springer-Verlag, 2008: 698-707.
17 孙川, 吴超仲, 褚端峰, 等. 基于SAX的车载数据时空语义编码及分析方法[J]. 公路交通科技, 2019, 36(8): 124-132.
Sun Chuan, Wu Chao-zhong, Chu Duan-feng, et al. Space-time semantic coding for on-board data and analysis method based on SAX[J]. Journal of Highway and Transportation Research and Development, 2019, 36(8): 124-132.
18 吕超, 鲁洪良, 于洋, 等. 基于分层强化学习和社会偏好的自主超车决策系统[J]. 中国公路学报, 2022, 35(3): 115-126.
Chao Lyu, Lu Hong-liang, Yu Yang, et al. Autonomous overtaking decision making system based on hierarchical reinforcement learning and social preferences[J]. China Journal of Highway and Transport, 2022, 35(3): 115-126.
19 Cunneen M, Mullins M, Murphy F. Autonomous vehicles and embedded artificial intelligence: the challenges of framing machine driving decisions[J]. Applied Artificial Intelligence, 2019, 33(8): 706-731.
20 伍毅平, 赵晓华. 基于图谱的个体驾驶行为特征描述方法研究[J]. 交通工程, 2018, 18(1): 13-17.
Wu Yi-ping, Zhao Xiao-hua. A graph based method to describe individual driving behavior[J]. Journal of Transportation Engineering, 2018, 18(1): 13-17.
[1] Hui ZHANG,Xin WEN,Hai-yu CHEN,Shi-chun HUANG. Vehicle trajectory holographic perception method based on laser range sensors [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2378-2384.
[2] Chang-jian WANG,Jiu-ming LIU,Jin-zhou ZHANG,Bin LI. Laser sequence pulse diagnosis method of planetary reducer fault based on high-speed photography technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1869-1875.
[3] Shu-hong MA,Guo-mei LIAO,Yan HUANG,Jun-jie ZHANG. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1913-1922.
[4] Pei-guang JING,Yu-dou TIAN,Shao-chu WANG,Yun LI,Yu-ting SU. Traffic flow prediction algorithm based on dynamic diffusion graph convolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1582-1592.
[5] Xi-jun ZHANG,Guang-jie YU,Yong CUI,Ji-yang SHANG. Short-term traffic flow prediction based on clustering algorithm and graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1593-1600.
[6] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[7] Qian LIU,Zhu-xin ZHANG,Ding-xuan ZHAO,Li-xin WANG,Ya-fei WANG. A new electric servo actuator based on energy recovery and its dynamic energy consumption analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1196-1204.
[8] Zhao-zheng HU,Xun-pei SUN,Jia-nan ZHANG,Ge HUANG,Yu-ting LIU. Vehicle-infrastructure-map cooperative localization method based on spatial-temporal graph model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1246-1257.
[9] Zhi-gang JIN,Ren-jun SU,Xiao-fang ZHAO. Psychological assessment method based on heterogeneous graph network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1078-1085.
[10] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[11] Ren-xiang CHEN,Chao-chao HU,Xiao-lin HU,Li-xia YANG,Jun ZHANG,Jia-le HE. Driver distracted driving detection based on improved YOLOv5 [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 959-968.
[12] Wen-ming JIANG,Li-zhong QI,Su ZHANG,Jing-guo RONG,Hong-bo WU,Chao ZUO,Xiao-long ZHANG. Quality inspection method of electric power engineering building information model based on knowledge graph [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 807-814.
[13] Chao YANG,Qing-yun YAO,Shuang-mei TANG,Qi-long CHEN,Feng QIN. Thermal conductivity and electrical insulation properties of fluorographene/polyimide composite films [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 663-673.
[14] Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639.
[15] Zhi-dan CAI,Ming FANG,Zhe LI,Jia-lu XU. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2649-2658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!